Skip to main content

Measuring the Full-Field Electroretinogram in Rodents

  • Protocol
  • First Online:
Retinal Ganglion Cells

Abstract

Electroretinography allows for noninvasive functional assessment of the retina and is a mainstay for preclinical studies of retinal function in health and disease. The full-field electroretinogram is useful for a variety of applications as it returns a functional readout from each of the major cell classes within the retina: photoreceptors, bipolar cells, amacrine cells, and retinal ganglion cells. Rodent models are commonly employed in ocular degeneration studies due to the fast throughput of these mammalian species and the conservation of the electroretinogram from the preclinic to the clinic. Here we describe approaches for in vivo electroretinography in rodent models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grillo SL, Koulen P (2015) Psychophysical testing in rodent models of glaucomatous optic neuropathy. Exp Eye Res 141:154–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leinonen H, Tanila H (2018) Vision in laboratory rodents-Tools to measure it and implications for behavioral research. Behav Brain Res 352:172–182

    Article  PubMed  Google Scholar 

  3. Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 48(2):745–751

    Article  PubMed  Google Scholar 

  4. Wilsey LJ, Fortune B (2015) Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol 27:118–124

    Article  Google Scholar 

  5. Pinto LH, Enroth-Cugell C (2000) Tests of the mouse visual system. Mamm Genome 11(7):531–536

    Article  CAS  PubMed  Google Scholar 

  6. Frishman L (2006) In: Heckenlively JR, Arden GB (eds) Origins of the electroretinogram, in Principles and practice of clinical electrophysiology of vision. The MIT Press, Cambridge, pp 139–184

    Google Scholar 

  7. Granit R (1933) Components of the retinal action potential in mammals and their relations to the discharge in the optic nerve. J Physiol 77:207–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lamb TD, Pugh ENJ (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nixon PJ, Bui BV, Armitage JA et al (2001) The contribution of cone responses to rat electroretinograms. Clin Exp Ophthalmol 29(3):193–196

    Article  CAS  PubMed  Google Scholar 

  10. Bui BV, Fortune B (2006) Origin of electroretinogram amplitude growth during light adaptation in pigmented rats. Vis Neurosci 23(2):155–167

    Article  PubMed  Google Scholar 

  11. Naka KI, Rushton WA (1966) S-potentials from colour units in the retina of fish (Cyprinidae). J Physiol 185(3):536–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17(4):485–521

    Article  CAS  PubMed  Google Scholar 

  13. Bui BV, Fortune B (2004) Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 555(Pt 1):153–173

    Article  CAS  PubMed  Google Scholar 

  14. Zhao D, Wong VHY, Nguyen CTO et al (2019) Reversibility of retinal ganglion cell dysfunction from chronic IOP elevation. Invest Ophthalmol Vis Sci 60(12):3878–3886

    Article  CAS  PubMed  Google Scholar 

  15. Kohzaki K, Vingrys AJ, Bui BV (2008) Early inner retinal dysfunction in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 49(8):3595–3604

    Article  PubMed  Google Scholar 

  16. Kohzaki K, Vingrys AJ, Armitage JA et al (2013) Electroretinography in streptozotocin diabetic rats following acute intraocular pressure elevation. Graefes Arch Clin Exp Ophthalmol 251(2):529–535

    Article  PubMed  Google Scholar 

  17. Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543(Pt 3):899–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robson JG, Maeda H, Saszik SM et al (2004) In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vis Res 44(28):3253–3268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang V. Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, P.Y. et al. (2023). Measuring the Full-Field Electroretinogram in Rodents. In: Mead, B. (eds) Retinal Ganglion Cells. Methods in Molecular Biology, vol 2708. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3409-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3409-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3408-0

  • Online ISBN: 978-1-0716-3409-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics