Skip to main content

NMR Relaxation Dispersion Experiments to Study Phosphopeptide Recognition by SH2 Domains: The Grb2-SH2–Phosphopeptide Encounter Complex

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2705))

Abstract

Protein interactions are at the essence of life. Proteins evolved not to have stable structures, but rather to be specialized in participating in a network of interactions. Every interaction involving proteins comprises the formation of an encounter complex, which may have two outcomes: (i) the dissociation or (ii) the formation of the final specific complex. Here, we present a methodology to characterize the encounter complex of the Grb2-SH2 domain with a phosphopeptide. This method can be generalized to other protein partners. It consists of the measurement of 15N CPMG relaxation dispersion (RD) profiles of the protein in the free state, which describes the residues that are in conformational exchange. We then acquire the dispersion profiles of the protein at a semisaturated concentration of the ligand. At this condition, the chemical exchange between the free and bound state leads to the observation of dispersion profiles in residues that are not in conformational exchange in the free state. This is due to fuzzy interactions that are typical of the encounter complexes. The transient “touching” of the ligand in the protein partner generates these new relaxation dispersion profiles. For the Grb2-SH2 domain, we observed a wider surface at SH2 for the encounter complex than the phosphopeptide (pY) binding site, which might explain the molecular recognition of remote phosphotyrosine. The Grb2-SH2–pY encounter complex is dominated by electrostatic interactions, which contribute to the fuzziness of the complex, but also have contribution of hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pascal SM, Yamazaki T, Singer AU et al (1995) Structural and dynamic characterization of the phosphotyrosine binding region of a Src homology 2 domain-phosphopeptide complex by NMR relaxation, proton exchange, and chemical shift approaches. Biochemistry 34:11353–11362. https://doi.org/10.1021/bi00036a008

    Article  CAS  PubMed  Google Scholar 

  2. Liu BA, Engelmann BW, Nash PD (2012) The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 586:2597–2605. https://doi.org/10.1016/j.febslet.2012.04.054

    Article  CAS  PubMed  Google Scholar 

  3. Kessels HWHG, Ward AC, Schumacher TNM (2002) Specificity and affinity motifs for Grb2 SH2-ligand interactions. Proc Natl Acad Sci U S A 99:8524–8529. https://doi.org/10.1073/pnas.142224499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou S, Shoelson SE, Chaudhuri M et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778. https://doi.org/10.1016/0092-8674(93)90404-E

    Article  Google Scholar 

  5. McNemar C, Snow ME, Windsor WT et al (1997) Thermodynamic and structural analysis of phosphotyrosine polypeptide binding to Grb2-SH2. Biochemistry 36(33):10006–10014. https://doi.org/10.1021/bi9704360

    Article  CAS  PubMed  Google Scholar 

  6. Nioche P, Liu WQ, Broutin I et al (2002) Crystal structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor. J Mol Biol 315:1167–1177. https://doi.org/10.1006/jmbi.2001.5299

    Article  CAS  PubMed  Google Scholar 

  7. Rahuel J, Gay B, Erdmann D et al (1996) Structural basis for specificity of GRB2-SH2 revealed by a novel ligand binding mode. Nat Struct Mol Biol 3:586–589. https://doi.org/10.1038/nsb0796-586

    Article  CAS  Google Scholar 

  8. Waksman G, Kominos D, Robertson SC et al (1992) Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358:646–653. https://doi.org/10.1038/358646a0

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Gong Z, Dong X, Tang C (2016) Transient protein–protein interactions visualized by solution NMR. Biochim Biophys Acta 1864:115–122. https://doi.org/10.1016/j.bbapap.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  10. Sanches K, Caruso IP, Almeida FCL, Melo FA (2020) The dynamics of free and phosphopeptide-bound Grb2-SH2 reveals two dynamically independent subdomains and an encounter complex with fuzzy interactions. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-70034-w

    Article  CAS  Google Scholar 

  11. James LC, Tawfik DS (2005) Structure and kinetics of a transient antibody binding intermediate reveal a kinetic discrimination mechanism in antigen recognition. Proc Natl Acad Sci U S A 102:12730–12735. https://doi.org/10.1073/pnas.0500909102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang C, Iwahara J, Clore GM (2006) Visualization of transient encounter complexes in protein-protein association. Nature 444:383–386. https://doi.org/10.1038/nature05201

    Article  CAS  PubMed  Google Scholar 

  13. Bashir Q, Scanu S, Ubbink M (2011) Dynamics in electron transfer protein complexes. FEBS J 278:1391–1400. https://doi.org/10.1111/j.1742-4658.2011.08062.x

    Article  CAS  PubMed  Google Scholar 

  14. Huang WYC, Ditlev JA, Chiang HK et al (2017) Allosteric modulation of Grb2 recruitment to the intrinsically disordered scaffold protein, LAT, by remote site phosphorylation. J Am Chem Soc 139:18009–18015. https://doi.org/10.1021/jacs.7b09387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  16. Ubbink M (2009) The courtship of proteins: understanding the encounter complex. FEBS Lett 583:1060–1066. https://doi.org/10.1016/j.febslet.2009.02.046

    Article  CAS  PubMed  Google Scholar 

  17. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691. https://doi.org/10.1063/1.1716296

    Article  CAS  Google Scholar 

  18. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630

    Article  CAS  Google Scholar 

  19. Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332

    Article  CAS  Google Scholar 

  20. Hansen DF, Vallurupalli P, Kay LE (2008) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904. https://doi.org/10.1021/jp074793o

    Article  CAS  PubMed  Google Scholar 

  21. Yuzawa S, Yokochi M, Hatanaka H et al (2001) Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J Mol Biol 306:527–537. https://doi.org/10.1006/jmbi.2000.4396

    Article  CAS  PubMed  Google Scholar 

  22. Wishart DS, Bigama CG, Yao J et al (1995) 13 C and 15 N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  CAS  PubMed  Google Scholar 

  23. Delaglio F, Grzesiek S, Vuister GW et al (1995) Nmrpipe – a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  24. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  CAS  PubMed  Google Scholar 

  25. Maciejewski MW, Schuyler AD, Gryk MR et al (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112:1529–1534. https://doi.org/10.1016/j.bpj.2017.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431. https://doi.org/10.1063/1.1744152

    Article  CAS  Google Scholar 

  27. Hansen DF, Led JJ (2003) Implications of using approximate Bloch-McConnell equations in NMR analyses of chemically exchanging systems: application to the electron self-exchange of plastocyanin. J Magn Reson 163:215–227. http://discovery.ucl.ac.uk/1308703/

    Article  PubMed  Google Scholar 

  28. Morin S, Linnet TE, Lescanne M et al (2014) relax: the analysis of biomolecular kinetics and thermodynamics using NMR relaxation dispersion data. Bioinformatics 30:2219–2220. https://doi.org/10.1093/BIOINFORMATICS/BTU166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carver J, Richards R (1972) A general two-site solution for the chemical exchange produced dependence of T2 upon the carr-Purcell pulse separation. J Magn Reson 6:89–105. https://doi.org/10.1016/0022-2364(72)90090-X

    Article  CAS  Google Scholar 

  30. Davis DG, Perlman ME, London RE (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1ρ and T2 (CPMG) methods. J Magn Reson Ser B 104:266–275. https://doi.org/10.1006/jmrb.1994.1084

    Article  CAS  Google Scholar 

  31. Ban D, Funk M, Gulich R et al (2011) Kinetics of conformational sampling in ubiquitin. Angew Chem Int Ed Engl 50:11437–11440. https://doi.org/10.1002/anie.201105086

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio C. L. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Almeida, F.C.L., Sanches, K., Caruso, I.P., Melo, F.A. (2023). NMR Relaxation Dispersion Experiments to Study Phosphopeptide Recognition by SH2 Domains: The Grb2-SH2–Phosphopeptide Encounter Complex. In: Carlomagno, T., Köhn, M. (eds) SH2 Domains. Methods in Molecular Biology, vol 2705. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3393-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3393-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3392-2

  • Online ISBN: 978-1-0716-3393-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics