Skip to main content

RNA Preparation and RNA-Seq Bioinformatics for Comparative Transcriptomics

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

Abstract

The principal transcriptome analysis is the determination of differentially expressed genes across experimental conditions. For this, the next-generation sequencing of RNA (RNA-seq) has several advantages over other techniques, such as the capability of detecting all the transcripts in one assay over RT-qPCR, such as its higher accuracy and broader dynamic range over microarrays or the ability to detect novel transcripts, including non-coding RNA molecules, at nucleotide-level resolution over both techniques. Despite these advantages, many microbiology laboratories have not yet applied RNA-seq analyses to their investigations. The high cost of the equipment for next-generation sequencing is no longer an issue since this intermediate part of the analysis can be provided by commercial or central services. Here, we detail a protocol for the first part of the analysis, the RNA extraction and an introductory protocol to the bioinformatics analysis of the sequencing data to generate the differential expression results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garalde DR, Snell EA, Jachimowicz D et al (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206. https://doi.org/10.1038/nmeth.4577

    Article  CAS  PubMed  Google Scholar 

  2. Hrdlickova R, Toloue M, Tian B (2017) RNA-seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 8:1364. https://doi.org/10.1002/wrna.1364

    Article  CAS  Google Scholar 

  3. Shi H, Zhou Y, Jia E et al (2021) Bias in RNA-seq library preparation: current challenges and solutions. Biomed Res Int 2021:6647597. https://doi.org/10.1155/2021/6647597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoder-Himes DR, Chain PSG, Zhu Y et al (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 106:3976–3981. https://doi.org/10.1073/pnas.0813403106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Valentin-Hansen P, Eriksen M, Udesen C (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51:1525–1533. https://doi.org/10.1111/j.1365-2958.2003.03935.x

    Article  CAS  PubMed  Google Scholar 

  6. De Lay N, Schu DJ, Gottesman S (2013) Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem 288:7996–8003. https://doi.org/10.1074/jbc.R112.441386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyakoshi M, Chao Y, Vogel J (2015) Regulatory small RNAs from the 3′ regions of bacterial mRNAs. Curr Opin Microbiol 24:132–139. https://doi.org/10.1016/j.mib.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  8. Chao Y, Papenfort K, Reinhardt R et al (2012) An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31:4005–4019. https://doi.org/10.1038/emboj.2012.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyakoshi M, Chao Y, Vogel J (2015) Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA. EMBO J 34:1478–1492. https://doi.org/10.15252/embj.201490546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng L, Rutherford ST, Papenfort K et al (2015) A qrr non-coding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:228–240. https://doi.org/10.1016/j.cell.2014.11.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Papenfort K, Sun Y, Miyakoshi M et al (2013) Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–437. https://doi.org/10.1016/j.cell.2013.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stiens J, Arnvig KB, Kendall SL et al (2022) Challenges in defining the functional, non-coding, expressed genome of members of the Mycobacterium tuberculosis complex. Mol Microbiol 117:20–31. https://doi.org/10.1111/mmi.14862

    Article  CAS  PubMed  Google Scholar 

  13. Sharma CM, Hoffmann S, Darfeuille F et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255. https://doi.org/10.1038/nature08756

    Article  CAS  PubMed  Google Scholar 

  14. Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105. https://doi.org/10.1016/j.mib.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  15. Conway T, Creecy JP, Maddox SM et al (2014) Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. mBio 5:e01442-14. https://doi.org/10.1128/mBio.01442-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marbaniang CN, Vogel J (2016) Emerging roles of RNA modifications in bacteria. Curr Opin Microbiol 30:50–57. https://doi.org/10.1016/j.mib.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  17. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656. https://doi.org/10.1038/s41576-019-0150-2

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H (2011) Improving SNP discovery by base alignment quality. Bioinformatics 27:1157–1158. https://doi.org/10.1093/bioinformatics/btr076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lei R, Ye K, Gu Z et al (2015) Diminishing returns in next-generation sequencing (NGS) transcriptome data. Gene 557:82–87. https://doi.org/10.1016/j.gene.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  22. Rodríguez-García A, Fernández-Alegre E, Morales A et al (2016) Complete genome sequence of “Mycobacterium neoaurum” NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65. https://doi.org/10.1016/j.jbiotec.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  23. Michna A (2022) splineTimeR: time-course differential gene expression data analysis using spline regression models followed by gene association network reconstruction. R package version 1.24.0. https://doi.org/10.18129/B9.bioc.splineTimeR

  24. Seyednasrollah F, Laiho A, Elo LL (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief Bioinform 16:59–70. https://doi.org/10.1093/bib/bbt086

    Article  CAS  PubMed  Google Scholar 

  25. Chowdhury HA, Bhattacharyya DK, Kalita JK (2020) Differential expression analysis of RNA-seq reads: overview, taxonomy and tools. IEEE/ACM Trans Comput Biol Bioinform 17:566–586. https://doi.org/10.1109/TCBB.2018.2873010

    Article  CAS  PubMed  Google Scholar 

  26. Law CW, Chen Y, Shi W et al (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349. https://doi.org/10.1126/science.1158441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilhelm BT, Marguerat S, Watt S et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243. https://doi.org/10.1038/nature07002

    Article  CAS  PubMed  Google Scholar 

  29. Diallo I, Ho J, Lalaouna D et al (2022) RNA sequencing unveils very small RNAs with potential regulatory functions in bacteria. Front Mol Biosci 9:914991. https://doi.org/10.3389/fmolb.2022.914991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the European Union program ERA-IB [MySterI (EIB.12.010)] through the APCIN call of the Spanish Ministry of Economy and Competitiveness (MINECO, Spain) (PCIN-2013-024-C02-01). The authors thank the European Union program ERA-IB; the Spanish Ministry of Economy and Competitiveness (MINECO, Spain); the MySter I Consortium (INBIOTEC, Pharmins Ltd., University of York, SINTEF, Technische Universität Dortmund, and Gadea Biopharma S.L.), and the Syntheroids project (ERA-CoBioTech 1st call; founded through the APCIN call of the Spanish Ministry of Science, Innovation and Universities; ID: PCI2018-093066). They also thank J. Merino, B. Martín and A. Casenave for their excellent technical assistance and the degree students of the group A. Morales and P. González.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodríguez-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodríguez-García, A., Sola-Landa, A., Barreiro, C. (2023). RNA Preparation and RNA-Seq Bioinformatics for Comparative Transcriptomics. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics