Skip to main content

Glucocorticoid Effect in Cancer Patients

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

Abstract

The use of glucocorticoids is very varied in the context of cancer patients and includes the treatment of symptoms related to cancer, but also the management of the most common side effects of antitumor treatments or adverse events related to the immune system. There is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anticancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen-presenting cells such as dendritic cells (DCs). The classic strategies to improve the medical management of inflammation are aimed at exacerbating the host’s immune response. Although successful in treating a number of diseases, these drugs have limited efficacy and variable responses can lead to unpredictable results. The ideal therapy should reduce inflammation without inducing immunosuppression and remains a challenge for healthcare personnel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sales-Ca-Campos H, Basso PJ, Alves VB et al (2015) Classical and recent advances in the treatment of inflammatory bowel diseases. Braz J Med Biol Res 48(2):96–107

    Article  Google Scholar 

  2. Clark AR, Bervisi MG (2012) Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol Ther 134:54–67

    Article  CAS  PubMed  Google Scholar 

  3. Zhidkova EM, Lylova ES, Savinkova AV et al (2020) A brief overview of the paradoxical role of glucocorticoids in breast cancer. Breast Cancer 14:117822342097466

    Article  Google Scholar 

  4. Herr I, Ucur E, Herzer K et al (2003) Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res 63:3112–3120

    CAS  PubMed  Google Scholar 

  5. Obradovic M, Hamelin B, Manevski NR et al (2019) Glucocorticoids promote breast cancer metastasis. Nature 567(7749):540

    Article  CAS  PubMed  Google Scholar 

  6. Pufall M (2015) Glucocorticoids and cancer. Exp Biol Med 872:315–333

    Article  CAS  Google Scholar 

  7. Wills B, Brahmer J, Naidoo J (2018) Treatment of complications from immune checkpoint inhibition in patients with lung cancer. Curr Treat Options Oncol 19:46

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bramer JR, Lacchetti C, Atkins MB et al (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 36(17):1714–1768

    Article  Google Scholar 

  9. Feldmann M, Maini R (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196

    Article  CAS  PubMed  Google Scholar 

  10. Gottlieb A (2007) Tumor necrosis factor blockade: mechanism of action. J Investig Dermatol 12(1):1–4

    Article  CAS  Google Scholar 

  11. Roach D, Bean A, Demangel C, France M, Briscoe H, Britton W (2002) TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. Immunology 168(9):4620–4627

    CAS  Google Scholar 

  12. Pardoll K (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castell-Rodríguez A, Piñón-Zárate G, Herrera-Enríquez M, Jarquín-Yáñez K, Medina-Solares I (2017) Dendritic cells: location, function, and clinical implications. In: Biology of myelomonocytic cells, 3rd edn. Anirban Gosh

    Google Scholar 

  14. Arce F, Kochan G, Breckpot K, Stephenson H, Escors D (2012) Selective activation of intracellular signalling pathways in dendritic cells for cancer immunotherapy. Anti Cancer Agents Med Chem 12:29–39

    Article  CAS  Google Scholar 

  15. Ghiringhelli F, Bruchard M, Apetoh L (2013) Immune effects of 5-fluorouracil: ambivalence matters. Oncoimmunology 2(3):e23139

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gato T, Liechtenstein T, Blanco-Luquín I, Zudaire M, Kochan G, Escors D (2015) Dentritic cells in cancer immunotherapy. An Sist Sanit Navar 38(2):279–287

    Article  CAS  PubMed  Google Scholar 

  17. Yakimchuk K (2019) Mathematical modeling of immune modulation by glucocorticoids. Biosystems 187:104066

    Article  PubMed  Google Scholar 

  18. Angka L, Khan S, Kilgour M, Xu R, Kennedy M, Auer R (2017) Dysfunctional natural killer cells in the aftermath of cancer surgery. Int J Mol Sci 18(8):1787

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen L, Hasni M, Jondal M, Yakimchuk K (2017) Modification of anti-tumor immunity by tolerogenic dendritic cells. Autoimmunity 50(6):370–376

    Article  CAS  PubMed  Google Scholar 

  20. Filipowicz W, Bhattacharyya S, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  21. Robertson S, Diver LA, Alvarez-Madrazo S et al (2017) Regulation of corticosteroidogenic genes by microRNAs. Int J Endocrinol 2017:1–11

    Article  Google Scholar 

  22. Nusrin S, Tong S, Chaturvedi G, Wu R, Giesy J, Kong R (2014) Regulation of CYP11B1 and CYP11B2 steroidogenic genes by hypoxia-inducible miR-10b in H295R cells. Mar Pollut Bull 85:344–351

    Article  CAS  PubMed  Google Scholar 

  23. Han Y, Staab-Weijnitz C, Xiong G, Maser E (2013) Identification of microRNAs as a potential novel regulatory mechanism in HSD11B1 expression. J Steroid Biochem Mol Biol 133:129–139

    Article  CAS  PubMed  Google Scholar 

  24. de Kloet E, Fitzsimons C, Datson N, Meijer O, Vreugdenhil E (2009) Glucocorticoid signaling and stress-related limbic susceptibility pathway: about receptors, transcription machinery and microRNA. J Brain Res 13(1293):129–141

    Article  Google Scholar 

  25. Moisiadis V, Matthews S (2014) Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol 10(7):403–411

    Article  CAS  PubMed  Google Scholar 

  26. Pentkowski N, Bouquin S, Maestas-Olguin C, Villasenor Z, Clark B (2008) Characterization of the vulnerability to repeated stress in Fischer 344 rats: possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. Eur J Neurosci 27(9):2250–2261

    Article  Google Scholar 

  27. Vigorito E, Kohlhaas S, Lu D, Leyland R (2013) An ancient regulator of the immune system. Immunol Rev J 253:146–157

    Article  Google Scholar 

  28. Kurowska-Stolarska M, Alivernini S, Ballantine L et al (2011) MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A 108:11193–11198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng Y, Xiong S, Jiang P et al (2012) Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155. Free Radic Biol Med J 52:1307–1317

    Article  CAS  Google Scholar 

  30. Wang Z, Liang Y, Tang H et al (2013) Dexamethasone down-regulates the expression of microRNA-155 in the livers of septic mice. PLoS One 8:e80547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Wang G, Liu Z, Wang S, Wang Y (2016) Glucocorticoids regulate the proliferation of T cells via miRNA-155 in septic shock. Exp Ther Med 12:3723–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mirzaei S, Zarrabi A, Asnaf S, Hashemi F, Zabolian A (2021) The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 268:119005

    Article  CAS  PubMed  Google Scholar 

  33. Guiducci C, Gong M, Xu Z et al (2010) TLR recognition of self-nucleic acids hampers glucocorticoid activity in lupus. Nature 465:937–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clayton S, Jones S, Kurowska-Stolarska M, Clark A (2018) The role of microRNAs in glucocorticoid action. J Biol Chem 293(6):1865–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimba A, Ikuta K (2020) Control of immunity by glucocorticoids in health and disease. Semin Immunopathol 42(6):669–680

    Article  CAS  PubMed  Google Scholar 

  36. Skor M, Wonder E, Kocherginsky M et al (2013) Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clin Cancer Res 19:6163–6172

    Article  CAS  PubMed  Google Scholar 

  37. Moran T, Gray S, Mikosz C, Conzen S (2000) The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells. Cancer Res 60:267–272

    Google Scholar 

  38. Greenstein A, Hunt H (2021) Glucocorticoid receptor antagonism promotes apoptosis in solid tumor cells. Oncotarget 12(13):1243–1255

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ramadhani F, Kang S, Kawala R, Chung B, Bai H, Kang B (2021) γ irradiated prednisolone promotes apoptosis of liver cancer cells via activation of intrinsic apoptosis signaling pathway. Mol Med Rep 23:425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van den Beuken-van Everdingen MH, Hochstenbach LM, Joosten EA, Tjan-Heijnen VC, Janssen DJ (2016) Update on prevalence of pain in patients with cancer: systematic review and meta-analysis. J Pain Symptom Manag 51(6):1070–1090

    Article  Google Scholar 

  41. Foley KM (2011) How well is cancer pain treated? Palliat Med 25(5):398–401

    Article  PubMed  Google Scholar 

  42. Fallon M, Hanks G, Cherny N (2006) Principles of control of cancer pain. BMJ 332:1022–1024

    Article  PubMed  PubMed Central  Google Scholar 

  43. Haywood A, Good P, Khan S, Leupp A, Jenkins-Marsh S, Rickett K, Hardy JR (2015) Corticosteroids for the management of cancer-related pain in adults. Cochrane Database Syst Rev 2015:CD010756

    PubMed  PubMed Central  Google Scholar 

  44. Chouahnia K, Luu M, Baba-Hamed N, Des Guetz G (2009) Bone metastases pain in the elderly. Rev Med Suisse 5:1126, 1128, 1130

    Google Scholar 

  45. Chow E, Meyer RM, Ding K, Nabid A, Chabot P, Wong P, Ahmed S, Kuk J, Dar AR, Mahmud A et al (2015) Dexamethasone in the prophylaxis of radiation-induced pain flare after palliative radiotherapy for bone metastases: a double-blind, randomized placebo-controlled, phase 3 trial. Lancet Oncol 16:1463–1472

    Article  CAS  PubMed  Google Scholar 

  46. Barghi K, Edmonds KP, Ajayi TA, Atayee RS (2018) Prescribing trends of palliative care team’s use of dexamethasone for cancer-related pain. J Pain Palliat Care Pharmacother 32(1):37–43

    Article  PubMed  Google Scholar 

  47. Bordag N, Klie S, Jurchott K, Vierheller J, Schiewe H, Albrecht V, Tonn JC, Schwartz C, Schichor C, Selbig J (2015) Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects. Sci Rep 5:15954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moricke A, Zimmermann M, Valsecchi MG, Stanulla M, Biondi A, Mann G, Locatelli F, Cazzaniga G, Niggli F, Aricò M (2016) Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood 127(17):2101–2112

    Article  CAS  PubMed  Google Scholar 

  49. Kalfeist L, Galland L, Ledys F, Ghiringhelli F, Limagne E, Ladoire S (2022) Impact of glucocorticoid use in oncology in the immunotherapy era. Cell 11:770

    Article  CAS  Google Scholar 

  50. Zimmerman M, Drings P (1984) Guidelines for therapy of pain in cancer patients. In: Pain in the cancer patient. Recent results in cancer research, vol 89. Springer, Berlin/Heidelberg, pp 1–12

    Chapter  Google Scholar 

  51. Lin RJ, Adelman RD, Mehta SS (2012) Dyspnea in palliative care: expanding the role of corticosteroids. J Palliat Med 15:834–837

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hui D, Kilgore K, Frisbee-Hume S, Park M, Tsao A, Delgado Guay M, Lu C, William W, Pisters K, Eapen G et al (2016) Dexamethasone for dyspnea in cancer patients: a pilot double-blind, randomized, controlled trial. J Pain Symptom Manage 52:8–16.e1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Paulsen O, Klepstad P, Rosland JH, Aass N, Albert E, Fayers P, Kaasa S (2014) Efficacy of methylprednisolone on pain, fatigue, and appetite loss in patients with advanced cancer using opioids: a randomized, placebo-controlled, double-blind trial. J Clin Oncol 32(29):3221–3228

    Article  CAS  PubMed  Google Scholar 

  54. Ryken TC, McDermott M, Robinson PD, Ammirati M, Andrews DW, Asher AL, Burri SH, Cobbs CS, Gaspar LE, Kondziolka D et al (2010) The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol 96:103–114

    Article  CAS  Google Scholar 

  55. Roth P, Happold C, Weller M (2015) Corticosteroid use in neuro-oncology: an update. Neurooncol Pract 2:6–12

    PubMed  Google Scholar 

  56. Sodji Q, Kaminski J, Willey C, Kim N, Mourad W, Vender J, Dasher B (2017) Management of metastatic spinal cord compression. South Med J 110:586–593

    Article  PubMed  Google Scholar 

  57. Laval G, Marcelin-Benazech B, Guirimand F, Chauvenet L, Copel L, Durand A, Francois E, Gabolde M, Mariani P, Rebischung C et al (2014) Recommendations for bowel obstruction with peritoneal carcinomatosis. J Pain Symptom Manag 48:75–91

    Article  Google Scholar 

  58. Ferguson HJ, Ferguson CI, Speakman J, Ismail T (2015) Management of intestinal obstruction in advanced malignancy. Ann Med Surg 4(3):264–270

    Article  Google Scholar 

  59. Tuca A, Guell E, Martinez-Losada E, Codorniu N (2012) Malignant bowel obstruction in advanced cancer patients: epidemiology, management, and factors influencing spontaneous resolution. Cancer Manag Res 4:159

    Article  PubMed  PubMed Central  Google Scholar 

  60. Feuer DJ, Broadley KE (2000) Corticosteroids for the resolution of malignant bowel obstruction in advanced gynecological and gastrointestinal cancer. Cochrane Database Syst Rev 2000:CD001219

    PubMed  PubMed Central  Google Scholar 

  61. Grunberg SM (2007) Antiemetic activity of corticosteroids in patients receiving cancer chemotherapy: dosing, efficacy, and tolerability analysis. Ann Oncol 18:233–240

    Article  CAS  PubMed  Google Scholar 

  62. Gupta K, Walton R, Kataria SP (2021) Chemotherapy-induced nausea and vomiting: pathogenesis, recommendations, and new trends. Cancer Treat Res Common 26:100278

    Article  Google Scholar 

  63. Tarantino P, Modi S, Tolaney SM, Cortes J, Hamilton EP, Kim S-B, Toi M, Andre F, Curigliano G (2021) Interstitial lung disease induced by anti-ERBB2 antibody-drug conjugates: a review. JAMA Oncol 7:1873–1881

    Article  PubMed  Google Scholar 

  64. Vahid B, Marik PE (2008) Pulmonary complications of novel antineoplastic agents for solid tumors. Chest 133:528–538

    Article  CAS  PubMed  Google Scholar 

  65. Miller S, McNutt L, McCann MA, McCorry N (2014) Use of corticosteroids for anorexia in palliative medicine: a systematic review. J Palliat Med 17:482–485

    Article  PubMed  Google Scholar 

  66. Yennurajalingam S, Bruera E (2014) Role of corticosteroids for fatigue in advanced incurable cancer: is it a “wonder drug” or “deal with the devil”. Curr Opin Support Palliat Care 8:346–351

    Article  PubMed  Google Scholar 

  67. Sturdza A, Millar BA, Bana N, Laperriere N, Pond G, Wong RKS, Bezjak A (2008) The use and toxicity of steroids in the management of patients with brain metastases. Support Care Cancer 16:1041–1048

    Article  PubMed  Google Scholar 

  68. Harding T, Baughn L, Kumar S et al (2019) The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia 33:283–883

    Article  Google Scholar 

  69. Ramamoorthy S, Cidlowski J (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin N Am 42:15–31

    Article  Google Scholar 

  70. Rasche L, Kortüm K, Raab M, Weinhold N (2019) The impact of tumor heterogeneity on diagnostics and novel therapeutic strategies in multiple myeloma. Int J Mol Sci 20:1–14

    Article  Google Scholar 

  71. Clarisse D, Offner F, De Boscher K (2020) Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 1874(2):188430

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta María Blanco-Nistal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Blanco-Nistal, M.M., Fernández-Fernández, J.A. (2023). Glucocorticoid Effect in Cancer Patients. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics