Skip to main content

Tandem Affinity Purification and Mass-Spectrometric Analysis of FACT and Associated Proteins

  • Protocol
  • First Online:
Base Excision Repair Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2701))

Abstract

Isolation of a protein/complex is important for its biochemical and structural characterization with mechanistic insights. TAP (tandem affinity purification) strategy allows rapid isolation of cellular proteins/complexes with a high level of purity. This methodology involves an immuno-affinity-based purification followed by a conformation-based isolation to obtain a highly homogeneous protein/complex. Here, we describe the TAP-mediated isolation of endogenous FACT (facilitates chromatin transcription; a heterodimer), an essential histone chaperone associated with BER (base excision repair). However, it is not clearly understood how FACT regulates BER. Such knowledge would advance our understanding of BER with implications in disease pathogenesis, since BER is an evolutionarily conserved process that is linked to various diseases including ageing, neurodegenerative disorders, and cancers. Using isolated FACT by TAP methodology, one can study the mechanisms of action of FACT in BER. Further, isolated FACT can be used for studies in other DNA transactions such as transcription and replication, as FACT is involved in these processes. Furthermore, TAP-mediated isolation strategy can be combined with mass spectrometry to identify the protein interaction partners of FACT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhaumik SR (2021) Fluorescence resonance energy transfer in revealing protein-protein interactions in living cells. Emerg Top Life Sci 5:49–59

    Article  CAS  PubMed  Google Scholar 

  2. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  3. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Séraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  CAS  PubMed  Google Scholar 

  4. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98:12902–12907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF (2002) RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22:6979–6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheeseman IM, Desai A (2005) A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE 2005:pl1

    Article  PubMed  Google Scholar 

  7. Gregan J, Riedel CG, Petronczki M, Cipak L, Rumpf C, Poser I, Buchholz F, Mechtler K, Nasmyth K (2007) Tandem affinity purification of functional TAP-tagged proteins from human cells. Nat Protoc 2:1145–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gould KL, Ren L, Feoktistova AS, Jennings JL, Link AJ (2004) Tandem affinity purification and identification of protein complex components. Methods 33:239–244

    Article  CAS  PubMed  Google Scholar 

  9. Pemsel A, Rumpf S, Roemer K, Heyne K, Vogt T, Reichrath J (2018) Tandem affinity purification and nano HPLC-ESI-MS/MS reveal binding of vitamin D receptor to p53 and other new interaction partners in HEK 293T cells. Anticancer Res 38:1209–1216

    CAS  PubMed  Google Scholar 

  10. Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D (1998) FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92:105–116

    Article  CAS  PubMed  Google Scholar 

  11. Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093

    Article  CAS  PubMed  Google Scholar 

  12. Mason PB, Struhl K (2003) The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol 23:8323–8333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sen R, Ferdoush J, Kaja A, Bhaumik SR (2016) Fine-tuning of FACT by the ubiquitin proteasome system in regulation of transcriptional elongation. Mol Cell Biol 36:1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sen R, Kaja A, Ferdoush J, Lahudkar S, Barman P, Bhaumik SR (2017) An mRNA capping enzyme targets FACT to the active gene to enhance the engagement of RNA polymerase II into transcriptional elongation. Mol Cell Biol 37:e00029–e00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaja A, Adhikari A, Karmakar S, Zhang W, Rothschild G, Basu U, Batra SK, Davie JK, Bhaumik SR (2021) Proteasomal regulation of mammalian SPT16 in controlling transcription. Mol Cell Biol 41:e00452–e00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winkler DD, Luger K (2011) The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem 286:18369–18374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Formosa T (2013) The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 1819:247–255

    Article  PubMed  Google Scholar 

  18. Barman P, Sen R, Kaja A, Ferdoush J, Guha S, Govind CK, Bhaumik SR (2022) Genome-wide regulations of the preinitiation complex formation and elongating RNA polymerase II by an E3 ubiquitin ligase, San1. Mol Cell Biol 42:e0036821

    Google Scholar 

  19. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Wang TS (2004) A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication. Mol Cell Biol 24:9568–9579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan BC, Chien CT, Hirose S, Lee SC (2006) Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J 25:3975–3985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heo K, Kim H, Choi SH, Choi J, Kim K, Gu J, Lieber MR, Yang AS, An W (2008) FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell 30:86–97

    Article  CAS  PubMed  Google Scholar 

  23. Kumari A, Mazina OM, Shinde U, Mazin AV, Lu H (2009) A role for SSRP1 in recombination-mediated DNA damage response. J Cell Biochem 108:508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, Grosbart M, Theil AF, van Cappellen WA, Kimura H, Bartek J, Fousteri M, Houtsmuller AB, Vermeulen W, Marteijn JA (2013) Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol Cell 51:469–479

    Article  CAS  PubMed  Google Scholar 

  25. Sand-Dejmek J, Adelmant G, Sobhian B, Calkins AS, Marto J, Iglehart DJ, Lazaro JB (2011) Concordant and opposite roles of DNA-PK and the “facilitator of chromatin transcription” (FACT) in DNA repair, apoptosis and necrosis after cisplatin. Mol Cancer 10:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Charles Richard JL, Shukla MS, Menoni H, Ouararhni K, Lone IN, Roulland Y, Papin C, Ben Simon E, Kundu T, Hamiche A, Angelov D, Dimitrov S (2016) FACT assists base excision repair by boosting the remodeling activity of RSC. PLoS Genet 12:e1006221

    Article  PubMed  PubMed Central  Google Scholar 

  27. Song H, Zeng J, Lele S, LaGrange CA, Bhakat KK (2021) APE1 and SSRP1 is overexpressed in muscle invasive bladder cancer and associated with poor survival. Heliyon 7:e06756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu G, Herzig M, Rotrek V, Walter CA (2008) Base excision repair, aging and health span. Mech Ageing Dev 129:366–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dianov GL, Hübscher U (2013) Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41:3483–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47

    Article  CAS  PubMed  Google Scholar 

  31. Zheng S, Crickard JB, Srikanth A, Reese JC (2014) A highly conserved region within H2B is important for FACT to act on nucleosomes. Mol Cell Biol 34:303–314

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gerace E, Moazed D (2015) Affinity purification of protein complexes using TAP tags. Methods Enzymol 559:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rosenbaum JC, Fredrickson EK, Oeser ML, Garrett-Engele CM, Locke MN, Richardson LA, Nelson ZW, Hetrick ED, Milac TI, Gottschling DE, Gardner RG (2011) Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol Cell 41:93–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Zhiguo Zhang for the yeast strain (TAP-tagged Pob3). The work in the Bhaumik laboratory was supported by the grants from the National Institutes of Health (GM088798-03). AK and SG were supported by the predoctoral fellowship of the American Heart Association and the doctoral fellowship of Southern Illinois University, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukesh R. Bhaumik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaja, A., Barman, P., Guha, S., Bhaumik, S.R. (2023). Tandem Affinity Purification and Mass-Spectrometric Analysis of FACT and Associated Proteins. In: Bhakat, K.K., Hazra, T.K. (eds) Base Excision Repair Pathway. Methods in Molecular Biology, vol 2701. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3373-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3373-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3372-4

  • Online ISBN: 978-1-0716-3373-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics