Skip to main content

A Practical Guide to Inferring Multi-Omics Networks in Plant Systems

  • Protocol
  • First Online:
Plant Gene Regulatory Networks

Abstract

The inference of gene regulatory networks can reveal molecular connections underlying biological processes and improve our understanding of complex biological phenomena in plants. Many previous network studies have inferred networks using only one type of omics data, such as transcriptomics. However, given more recent work applying multi-omics integration in plant biology, such as combining (phospho)proteomics with transcriptomics, it may be advantageous to integrate multiple omics data types into a comprehensive network prediction. Here, we describe a state-of-the-art approach for integrating multi-omics data with gene regulatory network inference to describe signaling pathways and uncover novel regulators. We detail how to download and process transcriptomics and (phospho)proteomics data for network inference, using an example dataset from the plant hormone signaling field. We provide a step-by-step protocol for inference, visualization, and analysis of an integrative multi-omics network using currently available methods. This chapter serves as an accessible guide for novice and intermediate bioinformaticians to analyze their own datasets and reanalyze published work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liberman LM, Sozzani R, Benfey PN (2012) Integrative systems biology: an attempt to describe a simple weed. Curr Opin Plant Biol 15:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song L, Huang SC, Wise A et al (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354:aag1550

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaudinier A, Rodriguez-Medina J, Zhang L et al (2018) Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563:259–264

    Article  CAS  PubMed  Google Scholar 

  4. Santos Teixeira JA, Ten Tusscher KH (2019) The systems biology of lateral root formation: connecting the dots. Mol Plant 12:784–803

    Article  CAS  PubMed  Google Scholar 

  5. Marshall-Colón A, Kliebenstein DJ (2019) Plant networks as traits and hypotheses: moving beyond description. Trends Plant Sci 24:840–852

    Article  PubMed  Google Scholar 

  6. Zhang W, Corwin JA, Copeland DH et al (2019) Plant–necrotroph co-transcriptome networks illuminate a metabolic battlefield. elife 8:e44279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Clercq I, Van de Velde J, Luo X et al (2021) Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nat Plants 7:500–513

    Article  PubMed  Google Scholar 

  8. Clark NM, Nolan TM, Wang P et al (2021) Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nat Commun 12:5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walley JW, Sartor RC, Shen Z et al (2016) Integration of omic networks in a developmental atlas of maize. Science 353:814–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montes C, Wang P, Liao C-Y et al (2022) Integration of multi-omics data reveals interplay between brassinosteroid and TORC signaling in Arabidopsis. New Phytologist 236:893-910

    Google Scholar 

  11. Zander M, Lewsey MG, Clark NM et al (2020) Integrated multi-omics framework of the plant response to jasmonic acid. Nat Plants 6:290–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang KN, Zhong S, Weirauch MT et al (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. elife 2:e00675

    Article  PubMed  PubMed Central  Google Scholar 

  13. McReynolds MR, Dash L, Montes C et al (2022) Temporal and spatial auxin responsive networks in maize primary roots. Quantitative Plant Biology 3:E21

    Google Scholar 

  14. Tai Y, Liu C, Yu S et al (2018) Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). BMC Genomics 19:616

    Article  PubMed  PubMed Central  Google Scholar 

  15. DiLeo MV, Strahan GD, den Bakker M et al (2011) Weighted Correlation Network Analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One 6:e26683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu Y, Wang Y, Shi H et al (2022) Time-course transcriptome and WGCNA analysis revealed the drought response mechanism of two sunflower inbred lines. PLoS One 17:e0265447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark NM, Buckner E, Fisher AP et al (2019) Stem-cell-ubiquitous genes spatiotemporally coordinate division through regulation of stem-cell-specific gene networks. Nat Commun 10:5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a USDA NIFA AFRI grant to DRK and JWW (Award No. 2020-67013-30914) and Hatch Act and State of Iowa funds to DRK (Project No. IOW03649) and JWW (Project No. IOW04308). DRK is also supported by NSF Award 2118253. Work in JWW’s laboratory is supported by the Iowa State University Plant Science Institute, NIH (GM120316), and NSF (2039489, 2040582, 1759023 & 1818160). Work in MGL’s lab is funded by the Australian Research Council (ARC) Industrial Transformation Hub in Medicinal Agriculture (IH180100006) with institutional and industry partners and by ARC Discovery Program grant DP220102840. Figures were created with Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie M. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clark, N.M., Hurgobin, B., Kelley, D.R., Lewsey, M.G., Walley, J.W. (2023). A Practical Guide to Inferring Multi-Omics Networks in Plant Systems. In: Kaufmann, K., Vandepoele, K. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 2698. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3354-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3354-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3353-3

  • Online ISBN: 978-1-0716-3354-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics