Skip to main content

Detection of Microorganisms in Body Fluid Samples

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

Abstract

Next-generation sequencing (NGS) has been widely applied to the identification of microbiome in body fluids. The methodology of 16S rRNA amplicon sequencing is simple, fast, and cost-effective. It overcomes the problem that some microorganisms cannot be isolated or cultured. Low abundant bacteria can also be amplified and sequenced, but the resolution of classification can hardly reach species or sub-species level; moreover, this methodology is mainly used to identify bacterial populations, and other microorganisms like viruses or fungi cannot be sequenced. On the other hand, the microbiome profiling obtained by shotgun metagenomic sequencing is more comprehensive with better resolution, and more accurate classification can be expected due to higher coverage of genomic sequences from microorganisms. By combining the capture-based method with metagenomic sequencing, we can further enrich and detect low abundant microorganisms and identify the viral integration sites in host gDNA at once.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14(7):676–684. https://doi.org/10.1038/ni.2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109(2):594–599. https://doi.org/10.1073/pnas.1116053109

    Article  PubMed  Google Scholar 

  3. Belkaid Y, Hand Timothy W (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141. https://doi.org/10.1016/j.cell.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, Cerutti JM, de Souza EB (2018) The human papillomavirus (HPV)-related cancer biology: an overview. Biomed Pharmacother 106:1537–1556. https://doi.org/10.1016/j.biopha.2018.06.149

    Article  CAS  PubMed  Google Scholar 

  5. Tsilimigras MCB, Fodor A, Jobin C (2017) Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2(3):17008. https://doi.org/10.1038/nmicrobiol.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang L, Richards A, Barrasa MA-O, Hughes SA-O, Young RA-O, Jaenisch R (2021) Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc Natl Acad Sci U S A 118:e2105968118. https://doi.org/10.1073/pnas.2105968118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xia Y, Liu Y, Deng M, Xi R (2019) Detecting virus integration sites based on multiple related sequencing data by VirTect. BMC Med Genet 12:19

    Google Scholar 

  8. Bousali M, Karamitros T (2022) Hepatitis B virus integration into transcriptionally active loci and HBV-associated hepatocellular carcinoma. Microorganisms 10(2):253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Woo PCY, Teng JLL, Yeung JMY, Tse H, Lau SKP, Yuen K-Y (2011) Automated identification of medically important bacteria by 16S rRNA gene sequencing using a novel comprehensive database, 16SpathDB. J Clin Microbiol 49(5):1799–1809. https://doi.org/10.1128/JCM.02350-10

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lao H-Y, Ng TT-L, Wong RY-L, Wong CS-T, Lee L-K, Wong DS-H, Chan CT-M, Jim SH-C, Leung JS-L, Lo HW-H, Wong IT-F, Yau MC-Y, Lam JY-W, Wu AK-L, Siu GK-H, Richter SS (2022) The clinical utility of two high-throughput 16S rRNA gene sequencing workflows for taxonomic assignment of unidentifiable bacterial pathogens in matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 60(1):e01769–e01721. https://doi.org/10.1128/JCM.01769-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lane DJ (1991) 16S/23S rRNA Sequencing. In: Nucleic acid techniques in bacterial systematics. Wiley

    Google Scholar 

  12. Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, Wong GK-S (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 7:459. https://doi.org/10.3389/fmicb.2016.00459

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chandrani P, Kulkarni V, Iyer P, Upadhyay P, Chaubal R, Das P, Mulherkar R, Singh R, Dutt A (2015) NGS-based approach to determine the presence of HPV and their sites of integration in human cancer genome. Br J Cancer 112(12):1958–1965. https://doi.org/10.1038/bjc.2015.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang W, Liu Y, Dong R, Liu J, Lang J, Yang J, Wang W, Li J, Meng B, Tian G (2020) Accurate detection of HPV integration sites in cervical cancer samples using the Nanopore MinION sequencer without error correction. Front Genet 11:660. https://doi.org/10.3389/fgene.2020.00660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quan L, Dong R, Yang W, Chen L, Lang J, Liu J, Song Y, Ma S, Yang J, Wang W, Meng B, Tian G (2019) Simultaneous detection and comprehensive analysis of HPV and microbiome status of a cervical liquid-based cytology sample using Nanopore MinION sequencing. Sci Rep 9(1):19337. https://doi.org/10.1038/s41598-019-55843-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ji, X., Ni, S., Tian, G., Zhang, L., Wang, W. (2023). Detection of Microorganisms in Body Fluid Samples. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics