Skip to main content

Circulating Non-coding RNAs and Exosomes: Liquid Biopsies for Monitoring Preeclampsia

  • Protocol
  • First Online:
Liquid Biopsies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2695))

Abstract

Preeclampsia (PE) remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. The early prediction or accurate diagnosis of PE is a concern of researchers. Liquid biopsy can be analyzed for cell-free nucleic acids and exosomes. Because circulating non-coding RNAs (ncRNAs) and peripheral blood exosomes can be detected in the peripheral blood of women in early pregnancy, these vesicles and their contents have become the focus of research on early predictive and diagnostic biomarkers for preeclampsia. In this review, we focus on recent studies addressing the roles of circulating ncRNAs and exosomes in PE, with particular attention paid to the potential application value of placenta-derived exosomes and circulating ncRNAs as PE-specific biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mol BWJ, Roberts CT, Thangaratinam S et al (2016) Pre-eclampsia. Lancet 387(10022):999–1011

    Article  PubMed  Google Scholar 

  2. Hiby SE, Apps R, Sharkey AM et al (2010) Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 120(11):4102–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rätsep MT, Felker AM, Kay VR et al (2015) Uterine natural killer cells: supervisors of vasculature construction in early decidua basalis. Reproduction 149(2):91–102

    Article  Google Scholar 

  4. Girardi G (2018) Complement activation, a threat to pregnancy. Semin Immunopathol 40(1):103–111

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Y, Damsky CH, Fisher SJ (1997) PE is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 99(9):2152–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25(3):287–299

    Article  PubMed  PubMed Central  Google Scholar 

  7. Robertson SA (2019) Preventing PE by silencing soluble Flt-1? N Engl J Med 380(11):1080–1082

    Article  PubMed  Google Scholar 

  8. Whigham CA, MacDonald TM, Walker SP et al (2019) Circulating GATA2 mRNA is decreased among women destined to develop PE and may be of endothelial origin. Sci Rep 9(1):235

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hecht JL, Ordi J, Carrilho C et al (2017) The pathology of eclampsia: an autopsy series. Hypertens Pregnancy 36(3):259–268

    Article  CAS  PubMed  Google Scholar 

  10. Sircar M, Thadhani R, Karumanchi SA (2015) Pathogenesis of PE. Curr Opin Nephrol Hypertens 24(2):131–138

    Article  CAS  PubMed  Google Scholar 

  11. Backes CH, Markham K, Moorehead P et al (2011) Maternal PE and neonatal outcomes. J Pregnancy 2011:214365

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burton GJ, Redman CW, Roberts JM et al (2019) Pre-eclampsia: pathophysiology and clinical implications. BMJ 366:l2381

    Article  PubMed  Google Scholar 

  13. McLaughlin K, Zhang J, Lye SJ et al (2018) Phenotypes of pregnant women who subsequently develop hypertension in pregnancy. J Am Heart Assoc 7(14):e009595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poon LL, Leung TN, Lau TK et al (2000) Presence of fetal RNA in maternal plasma. Clin Chem 46(11):1832–1834

    Article  CAS  PubMed  Google Scholar 

  15. Ng EK, Tsui NB, Lau TK et al (2003) mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci U S A 100(8):4748–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Go AT, Visser A, Mulders MA et al (2004) Detection of placental transcription factor mRNA in maternal plasma. Clin Chem 50(8):1413–1414

    Article  CAS  PubMed  Google Scholar 

  17. Tsui NB, Chim SS, Chiu RW et al (2004) Systematic micro-array based identification of placental mRNA in maternal plasma: towards non-invasive prenatal gene expression profiling. J Med Genet 41(6):461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsui NB, Jiang P, Wong YF et al (2014) Maternal plasma RNA sequencing for genome-wide transcriptomic profiling and identification of pregnancy-associated transcripts. Clin Chem 60(7):954–962

    Article  CAS  PubMed  Google Scholar 

  19. Koh W, Pan W, Gawad C et al (2014) Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci U S A 111(20):7361–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsang JCH, Vong JSL, Ji L et al (2017) Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc Natl Acad Sci U S A 114(37):E7786–E7795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Record M, Carayon K, Poirot M et al (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120

    Article  CAS  PubMed  Google Scholar 

  22. Sarker S, Scholz-Romero K, Perez A et al (2014) Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med 12:204

    Article  PubMed  PubMed Central  Google Scholar 

  23. Salomon C, Scholz-Romero K, Sarker S et al (2016) Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes 65(3):598–609

    Article  CAS  PubMed  Google Scholar 

  24. Redman CW, Sargent IL (2008) Circulating microparticles in normal pregnancy and pre-eclampsia. Placenta 29(Suppl A):S73–S77

    Article  PubMed  Google Scholar 

  25. Chiu RW, Lui WB, Cheung MC et al (2006) Time profile of appearance and disappearance of circulating placenta-derived mRNA in maternal plasma. Clin Chem 52(2):313–316

    Article  CAS  PubMed  Google Scholar 

  26. Høgh AM, Hviid TV, Christensen B et al (2001) Zeta-, epsilon-, and gamma-globin mRNA in blood samples and CD71(+) cell fractions from fetuses and from pregnant and nonpregnant women, with special attention to identification of fetal erythroblasts. Clin Chem 47(4):645–653

    Article  PubMed  Google Scholar 

  27. Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14(8):16010–16039

    Article  PubMed  PubMed Central  Google Scholar 

  28. Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16(3):167–179

    Article  CAS  PubMed  Google Scholar 

  29. Murphy MS, Tayade C, Smith GN (2017) Maternal circulating microRNAs and pre-eclampsia: challenges for diagnostic potential. Mol Diagn Ther 21(1):23–30

    Article  CAS  PubMed  Google Scholar 

  30. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14(8):535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schjenken JE, Zhang B, Chan HY et al (2016) miRNA regulation of immune tolerance in early pregnancy. Am J Reprod Immunol 75(3):272–280

    Article  CAS  PubMed  Google Scholar 

  32. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagy B (2019) Cell-free nucleic acids. Int J Mol Sci 20(22):5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delás MJ, Hannon GJ (2017) lncRNAs in development and disease: from functions to mechanisms. Open. Biol 7(7):170121

    Google Scholar 

  35. Guo L, Zhao Y, Yang S et al (2014) An integrated analysis of miRNA, lncRNA, and mRNA expression profiles. Biomed Res Int 2014:345605

    PubMed  PubMed Central  Google Scholar 

  36. Greene J, Baird AM, Brady L et al (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oudejans CB (2015) Maternal plasma RNA sequencing. Clin Biochem 48(15):942–947

    Article  CAS  PubMed  Google Scholar 

  38. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  39. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  40. Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66(1):9–21. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yoon JH, Abdelmohsen K, Gorospe M et al (2013) Abdelmohsen, and M. Gorospe, posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425(19):3723–3730

    Article  CAS  PubMed  Google Scholar 

  43. Yoffe L, Gilam A, Yaron O et al (2018) Early detection of PE using circulating small non-coding RNA. Sci Rep 8(1):3401

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yoffe L, Gilam A, Yaron O et al (2017) Expression profiling of maternal plasma and placenta microRNAs in preeclamptic pregnancies by microarray technology. Placenta 52:77–85

    Article  Google Scholar 

  45. Chim SS, Shing TK, Hung EC et al (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54(3):482–490

    Article  CAS  PubMed  Google Scholar 

  46. Lip SV, Boekschoten MV, Hooiveld GJ et al (2020) Early-onset PE, plasma microRNAs, and endothelial cell function. Am J Obstet Gynecol 222(5):497 e1–497 e12

    Article  PubMed  Google Scholar 

  47. Frazier S, McBride MW, Mulvana H et al (2020) From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in PE. Clin Sci (Lond) 134(8):1001–1025

    Article  CAS  PubMed  Google Scholar 

  48. Hromadnikova I, Kotlabova K, Ivankova K et al (2017) Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, PE and fetal growth restriction. Int J Cardiol 249:402–409

    Article  PubMed  Google Scholar 

  49. Wang CY, Tsai PY, Chen TY et al (2019) Elevated miR-200a and miR-141 inhibit endocrine gland-derived vascular endothelial growth factor expression and ciliogenesis in PE. J Physiol 597(12):3069–3083

    Article  CAS  PubMed  Google Scholar 

  50. Cao G, Cui R, Liu C et al (2019) MicroRNA regulation of transthyretin in trophoblast biofunction and PE. Arch Biochem Biophys 676:108129

    Article  CAS  PubMed  Google Scholar 

  51. Eghbal-Fard S, Yousefi M, Heydarlou H et al (2019) The imbalance of Th17/Treg axis involved in the pathogenesis of PE. J Cell Physiol 234(4):5106–5116

    Article  CAS  PubMed  Google Scholar 

  52. Gan L, Liu Z, Wei M et al (2017) MiR-210 and miR-155 as potential diagnostic markers for pre-eclampsia pregnancies. Medicine (Baltimore) 96(28):e7515

    Article  CAS  PubMed  Google Scholar 

  53. Ura B, Feriotto G, Monasta L et al (2014) Potential role of circulating microRNAs as early markers of PE. Taiwan J Obstet Gynecol 53(2):232–234

    Article  PubMed  Google Scholar 

  54. Li H, Ge Q, Guo L et al (2013) Maternal plasma miRNAs expression in preeclamptic pregnancies. Biomed Res Int 2013:970265

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gusar V, Timofeeva A, Chagovets V et al (2020) PE: the interplay between oxygen-sensitive miRNAs and erythropoietin. J Clin Med 9(2):574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu L, Zhou H, Lin H et al (2012) Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction 143(3):389–397

    Article  CAS  PubMed  Google Scholar 

  57. Fu G, Ye G, Nadeem L et al (2013) MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension 61(4):864–872

    Article  CAS  PubMed  Google Scholar 

  58. Tsai PY, Li SH, Chen WN et al (2017) Differential miR-346 and miR-582-3p expression in association with selected maternal and fetal complications. Int J Mol Sci 18(7):1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anton L, Olarerin-George AO, Schwartz N et al (2013) miR-210 inhibits trophoblast invasion and is a serum biomarker for PE. Am J Pathol 183(5):1437–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang L, Long A, Tan L et al (2017) Elevated microRNA-520g in pre-eclampsia inhibits migration and invasion of trophoblasts. Placenta 51:70–75

    Article  CAS  PubMed  Google Scholar 

  61. Hromadnikova I, Dvorakova L, Kotlabova K et al (2019) The prediction of gestational hypertension, PE and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs. Int J Mol Sci 20(12):2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jia N, Li J (2019) Role of circular RNAs in PE. Dis Markers 2019:7237495

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jiang M, Lash GE, Zhao X, Long Y et al (2018) CircRNA-0004904, CircRNA-0001855, and PAPP-A: potential novel biomarkers for the prediction of PE. Cell Physiol Biochem 46(6):2576–2586

    Article  CAS  PubMed  Google Scholar 

  64. Zhang YG, Yang HL, Long Y et al (2016) Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG 123(13):2113–2118

    Article  CAS  PubMed  Google Scholar 

  65. Jin X, Ma X, Zhu Y (2019) Investigating dysregulated sub-pathways for PE infants based on lncRNA-mRNA expression data and pathway network. Ann Clin Lab Sci 49(5):598–607

    CAS  PubMed  Google Scholar 

  66. Hu X, Ao J, Li X et al (2018) Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia. Clin Epigenetics 10:48

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu S, Xie X, Lei H et al (2019) Identification of key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in PE using bioinformatics analysis. Med Sci Monit 25:1679–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208

    Article  CAS  PubMed  Google Scholar 

  69. Luo SS, Ishibashi O, Ishikawa G et al (2009) Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod 81(4):717–729

    Article  CAS  PubMed  Google Scholar 

  70. Ouyang Y, Mouillet JF, Coyne CB et al (2014) Review: placenta-specific microRNAs in exosomes – good things come in nano-packages. Placenta 35(Suppl):S69–S73

    Article  CAS  PubMed  Google Scholar 

  71. Mathivanan S, Simpson RJ et al (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21):4997–5000

    Article  CAS  PubMed  Google Scholar 

  72. Akers JC, Gonda D, Kim R et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro-Oncol 113(1):1–11

    Article  Google Scholar 

  73. Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624

    Article  CAS  PubMed  Google Scholar 

  74. O’Loughlin AJ, Woffindale CA, Wood MJ (2012) Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther 12(4):262–274

    Article  PubMed  Google Scholar 

  75. Zamani P, Fereydouni N, Butler AE et al (2019) The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med 29(6):313–323

    Article  CAS  PubMed  Google Scholar 

  76. Moro L, Bardají A, Macete E et al (2016) Placental microparticles and MicroRNAs in pregnant women with plasmodium falciparum or HIV infection. PLoS One 11(1):e0146361

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kam W, Clauser E, Kim YS et al (1985) Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc Natl Acad Sci U S A 82(24):8715–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leitner K, Szlauer R, Ellinger I et al (2001) Placental alkaline phosphatase expression at the apical and basal plasma membrane in term villous trophoblasts. J Histochem Cytochem 49(9):1155–1164

    Article  CAS  PubMed  Google Scholar 

  79. Mitchell MD, Peiris HN, Kobayashi M et al (2015) Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol 213(4 Suppl):S173–S181

    Article  CAS  PubMed  Google Scholar 

  80. Salomon C, Torres MJ, Kobayashi M et al (2014) A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One 9(6):e98667

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jin J, Menon R (2018) Placental exosomes: a proxy to understand pregnancy complications. Am J Reprod Immunol 79(5):e12788

    Article  PubMed  Google Scholar 

  82. Mincheva-Nilsson L, Baranov V (2010) The role of placental exosomes in reproduction. Am J Reprod Immunol 63(6):520–533

    Article  CAS  PubMed  Google Scholar 

  83. Kambe S, Yoshitake H, Yuge K et al (2014) Human exosomal placenta-associated miR-517a-3p modulates the expression of PRKG1 mRNA in Jurkat cells. Biol Reprod 91(5):129

    Article  PubMed  Google Scholar 

  84. Zhao G, Yang C, Yang J et al (2018) Placental exosome-mediated Bta-miR-499-Lin28B/let-7 axis regulates inflammatory bias during early pregnancy. Cell Death Dis 9(6):704

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ma HY, Cu W, Sun YH et al (2020) MiRNA-203a-3p inhibits inflammatory response in PE through regulating IL24. Eur Rev Med Pharmacol Sci 24(10):5223–5230

    PubMed  Google Scholar 

  86. Takahashi H, Ohkuchi A, Kuwata T et al (2017) Endogenous and exogenous miR-520c-3p modulates CD44-mediated extravillous trophoblast invasion. Placenta 50:25–31

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Du X, Wang J et al (2020) Transfer of miR-15a-5p by placental exosomes promotes pre-eclampsia progression by regulating PI3K/AKT signaling pathway via CDK1. Mol Immunol 128:277–286

    Article  CAS  PubMed  Google Scholar 

  88. Ouyang Y, Bayer A, Chu T et al (2016) Isolation of human trophoblastic extracellular vesicles and characterization of their cargo and antiviral activity. Placenta 47:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Komaki M, Numata Y, Morioka C et al (2017) Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther 8(1):219

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shen L, Li Y, Li R et al (2018) Placentaassociated serum exosomal miR155 derived from patients with PE inhibits eNOS expression in human umbilical vein endothelial cells. Int J Mol Med 41(3):1731–1739

    CAS  PubMed  Google Scholar 

  91. Chiarello DI, Salsoso R, Toledo F et al (2018) Foetoplacental communication via extracellular vesicles in normal pregnancy and PE. Mol Asp Med 60:69–80

    Article  Google Scholar 

  92. Salomon C, Guanzon D, Scholz-Romero K et al (2017) Placental exosomes as early biomarker of PE: potential role of exosomal MicroRNAs across gestation. J Clin Endocrinol Metab 102(9):3182–3194

    Article  PubMed  Google Scholar 

  93. Tannetta D, Masliukaite I, Vatish M et al (2017) Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and PE. J Reprod Immunol 119:98–106

    Article  CAS  PubMed  Google Scholar 

  94. Pillay P, Moodley K, Moodley J et al (2017) Placenta-derived exosomes: potential biomarkers of PE. Int J Nanomedicine 12:8009–8023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pillay P, Maharaj N, Moodley J et al (2016) Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta 46:18–25

    Article  CAS  PubMed  Google Scholar 

  96. Gunel T, Zeybek YG, Akçakaya P et al (2011) Serum microRNA expression in pregnancies with PE. Genet Mol Res 10(4):4034–4040

    Article  CAS  PubMed  Google Scholar 

  97. Xu P, Zhao Y, Liu M et al (2014) Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension 63(6):1276–1284

    Article  CAS  PubMed  Google Scholar 

  98. Wang H, Zhang L, Guo X et al (2018) MiR-195 modulates oxidative stress-induced apoptosis and mitochondrial energy production in human trophoblasts via flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 and pyruvate dehydrogenase phosphatase regulatory subunit. J Hypertens 36(2):306–318

    Article  CAS  PubMed  Google Scholar 

  99. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006

    Article  CAS  PubMed  Google Scholar 

  100. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108(12):5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li H, Ouyang Y, Sadovsky E et al (2020) Unique microRNA signals in plasma exosomes from pregnancies complicated by PE. Hypertension 75(3):762–771

    Article  CAS  PubMed  Google Scholar 

  103. Sandrim VC, Luizon MR, Palei AC et al (2016) Circulating microRNA expression profiles in pre-eclampsia: evidence of increased miR-885-5p levels. BJOG 123(13):2120–2128

    Article  CAS  PubMed  Google Scholar 

  104. Motawi TMK, Sabry D, Maurice NW et al (2018) Role of mesenchymal stem cells exosomes derived microRNAs; miR-136, miR-494 and miR-495 in pre-eclampsia diagnosis and evaluation. Arch Biochem Biophys 659:13–21

    Article  CAS  PubMed  Google Scholar 

  105. Wang Z, Wang P, Wang Z et al (2019) MiRNA-548c-5p downregulates inflammatory response in PE via targeting PTPRO. J Cell Physiol 234(7):11149–11155

    Article  CAS  PubMed  Google Scholar 

  106. Devor E, Santillan D, Scroggins S et al (2020) Trimester-specific plasma exosome microRNA expression profiles in PE. J Matern Fetal Neonatal Med 33(18):3116–3124

    Article  CAS  PubMed  Google Scholar 

  107. Xueya Z, Yamei L, Sha C et al (2020) Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in PE. Biochem Biophys Res Commun 525(3):646–653

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was funded by Wuxi Commission of Health and Family Planning (Grant No.: Q202104), Key Project of Maternal and Child Health of Jiangsu Province (Grant No.: F2022107) and the Wuxi Taihu Talent Project Fund (2021 No.19). Na Li and Ying Gu contributed equally to this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, N., Gu, Y., Tang, J., Li, Y., Chen, D., Xu, Z. (2023). Circulating Non-coding RNAs and Exosomes: Liquid Biopsies for Monitoring Preeclampsia. In: Huang, T., Yang, J., Tian, G. (eds) Liquid Biopsies. Methods in Molecular Biology, vol 2695. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3346-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3346-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3345-8

  • Online ISBN: 978-1-0716-3346-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics