Skip to main content

Methods to Assess the Impact of Hsp90 Chaperone Function on Extracellular Client MMP2 Activity

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2693))

Abstract

Secreted, or extracellular, heat shock protein 90 (eHsp90) is considered a recent discovery in eukaryotes. Over the last two decades, studies have provided significant supporting evidence that implicates eHsp90 both in normal cellular processes such as wound healing and in the development of human pathologies and diseases including fibrosis and cancer. In the early 2000s, Eustace et al. demonstrated that eHsp90 promotes the invasion of breast cancer cells by binding to and regulating the activity of an extracellular matrix (ECM) remodeling enzyme, the matrix metalloproteinase 2 or MMP2. Interestingly, inside mammalian cells, Hsp90 is an essential chaperone that interacts with hundreds of newly synthesized proteins, known as “clients,” that require Hsp90’s assistance to perform their function. Several methods are routinely used to characterize the role and impact of Hsp90 on a client protein’s functionality in vitro and in vivo. However, the mechanistic role of eHsp90 is less well-defined since, so far, only a handful of extracellular client proteins have been identified. Here, we describe methods to characterize the impact of the secreted chaperone on MMP2 activity, the most characterized extracellular client of eHsp90. The procedures described here can be applied and adapted to characterize other extracellular clients, particularly members of the MMP family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biebl MM, Buchner J (2019) Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol 11(9):106

    Article  Google Scholar 

  2. Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18(6):345–360

    Article  CAS  PubMed  Google Scholar 

  3. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528

    Article  CAS  PubMed  Google Scholar 

  4. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16(3):287–293

    Article  CAS  PubMed  Google Scholar 

  5. Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823(3):614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, Singh S et al (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10(6):1307–1318

    Article  CAS  PubMed  Google Scholar 

  7. Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H et al (2010) Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 37(3):344–354

    Article  CAS  PubMed  Google Scholar 

  8. Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J (2017) The plasticity of the Hsp90 co-chaperone system. Mol Cell 67(6):947–61e5

    Article  CAS  PubMed  Google Scholar 

  9. Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823(3):730–741

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Tsen F, Sahu D, Bhatia A, Chen M, Multhoff G et al (2013) Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: intentionally or unintentionally. Int Rev Cell Mol Biol 303:203–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poggio P, Sorge M, Secli L, Brancaccio M (2021) Extracellular HSP90 machineries build tumor microenvironment and boost cancer progression. Front Cell Dev Biol 9:735529

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wong DS, Jay DG (2016) Emerging roles of extracellular Hsp90 in cancer. Adv Cancer Res 129:141–163

    Article  CAS  PubMed  Google Scholar 

  13. Backe SJ, Votra SD, Stokes MP, Sebestyén E, Castelli M, Torielli L et al (2023) PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling. Cell Reports 42(6):112539. https://doi.org/10.1016/j.celrep.2023.112539

  14. Bourboulia D, Stetler-Stevenson WG (2010) Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol 20(3):161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baker-Williams AJ, Hashmi F, Budzynski MA, Woodford MR, Gleicher S, Himanen SV et al (2019) Co-chaperones TIMP2 and AHA1 competitively regulate extracellular HSP90:client MMP2 activity and matrix proteolysis. Cell Rep 28(7):1894–1906. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6(6):507–514

    Article  CAS  PubMed  Google Scholar 

  17. Song X, Wang X, Zhuo W, Shi H, Feng D, Sun Y et al (2010) The regulatory mechanism of extracellular Hsp90{alpha} on matrix metalloproteinase-2 processing and tumor angiogenesis. J Biol Chem 285(51):40039–40049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stellas D, El Hamidieh A, Patsavoudi E (2010) Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits. BMC Cell Biol 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sager RA, Khan F, Toneatto L, Votra SD, Backe SJ, Woodford MR et al (2022) Targeting extracellular Hsp90: a unique frontier against cancer. Front Mol Biosci 9:982593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sánchez-Pozo J, Baker-Williams AJ, Woodford MR, Bullard R, Wei B, Mollapour M et al (2018) Extracellular phosphorylation of TIMP-2 by secreted c-Src tyrosine kinase controls MMP-2 activity. Iscience 1C:87–96

    Article  Google Scholar 

  21. Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26(8):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Corcoran ML, Emmert-Buck MR, McClanahan JL, Pelina-Parker M, Stetler-Stevenson WG (1996) TIMP-2 mediates cell surface binding of MMP-2. Adv Exp Med Biol 389:295–304

    Article  CAS  PubMed  Google Scholar 

  23. Corcoran ML, Hewitt RE, Kleiner DE Jr, Stetler-Stevenson WG (1996) MMP-2: expression, activation and inhibition. Enzyme Protein 49(1–3):7–19

    Article  CAS  PubMed  Google Scholar 

  24. Itoh Y, Binner S, Nagase H (1995) Steps involved in activation of the complex of pro-matrix metalloproteinase 2 (progelatinase A) and tissue inhibitor of metalloproteinases (TIMP)-2 by 4-aminophenylmercuric acetate. Biochem J 308(Pt 2):645–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270(10):5331–5338

    Article  CAS  PubMed  Google Scholar 

  26. Kleiner DE, Stetler-Stevenson WG (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218(2):325–329

    Article  CAS  PubMed  Google Scholar 

  27. Cortes S, Baker-Williams AJ, Mollapour M, Bourboulia D (1709) Detection and analysis of extracellular Hsp90 (eHsp90). Methods Mol Biol 2018:321–329

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Alexander J. Baker-Williams for critical discussions and technical support. Dimitra Bourboulia is supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM139932. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional funding sources include the SUNY Upstate Medical University, the Upstate Foundation, the SUNY Research Foundation, and the Carol M. Baldwin Breast Cancer Research fund grant (D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Bourboulia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Votra, S.D., Alsalih, D., Bourboulia, D. (2023). Methods to Assess the Impact of Hsp90 Chaperone Function on Extracellular Client MMP2 Activity. In: Calderwood, S.K., Prince, T.L. (eds) Chaperones. Methods in Molecular Biology, vol 2693. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3342-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3342-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3341-0

  • Online ISBN: 978-1-0716-3342-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics