Skip to main content

Quantitative Spatio-temporal Analysis of Phagosome Maturation in Live Cells

  • Protocol
  • First Online:
Phagocytosis and Phagosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2692))

Abstract

Phagocytosis and phagosome maturation are central processes to the development of the innate and adaptive immune response. Phagosome maturation is a continuous and dynamic process that occurs rapidly. In this chapter we describe fluorescence-based live cell imaging methods for the quantitative and temporal analysis of phagosome maturation of beads and M. tuberculosis as two phagocytic targets. We also describe simple protocols for monitoring phagosome maturation: the use of the acidotropic probe LysoTracker and analyzing the recruitment of EGFP-tagged host proteins by phagosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33(8):397–405. https://doi.org/10.1016/j.it.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  2. Flannagan RS, Jaumouille V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol 7:61–98. https://doi.org/10.1146/annurev-pathol-011811-132445

    Article  CAS  PubMed  Google Scholar 

  3. Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8(4):311–330. https://doi.org/10.1111/j.1600-0854.2006.00531.x

    Article  CAS  PubMed  Google Scholar 

  4. MacGurn JA, Cox JS (2007) A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun 75(6):2668–2678. https://doi.org/10.1128/IAI.01872-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263(5147):678–681. https://doi.org/10.1126/science.8303277

    Article  CAS  PubMed  Google Scholar 

  6. Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y (2011) Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A 108(48):19371–19376. https://doi.org/10.1073/pnas.1109201108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Queval CJ, Song OR, Carralot JP, Saliou JM, Bongiovanni A, Deloison G, Deboosere N, Jouny S, Iantomasi R, Delorme V, Debrie AS, Park SJ, Gouveia JC, Tomavo S, Brosch R, Yoshimura A, Yeramian E, Brodin P (2017) Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep 20(13):3188–3198. https://doi.org/10.1016/j.celrep.2017.08.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V (2004) Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 15(2):751–760. https://doi.org/10.1091/mbc.e03-05-0307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vergne I, Chua J, Deretic V (2003) Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med 198(4):653–659. https://doi.org/10.1084/jem.20030527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Augenstreich J, Arbues A, Simeone R, Haanappel E, Wegener A, Sayes F, Le Chevalier F, Chalut C, Malaga W, Guilhot C, Brosch R, Astarie-Dequeker C (2017) ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell Microbiol 19(7). https://doi.org/10.1111/cmi.12726

  11. Kasmapour B, Gronow A, Bleck CK, Hong W, Gutierrez MG (2012) Size-dependent mechanism of cargo sorting during lysosome-phagosome fusion is controlled by Rab34. Proc Natl Acad Sci U S A 109(50):20485–20490. https://doi.org/10.1073/pnas.1206811109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lancaster CE, Fountain A, Dayam RM, Somerville E, Sheth J, Jacobelli V, Somerville A, Terebiznik MR, Botelho RJ (2021) Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes. J Cell Biol 220(9). https://doi.org/10.1083/jcb.202005072

  13. Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22(5):539–550. https://doi.org/10.1016/j.immuni.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Lu N, Zhou Z (2012) Membrane trafficking and phagosome maturation during the clearance of apoptotic cells. Int Rev Cell Mol Biol 293:269–309. https://doi.org/10.1016/B978-0-12-394304-0.00013-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoffmann E, Marion S, Mishra BB, John M, Kratzke R, Ahmad SF, Holzer D, Anand PK, Weiss DG, Griffiths G, Kuznetsov SA (2010) Initial receptor-ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis. Eur J Cell Biol 89(9):693–704. https://doi.org/10.1016/j.ejcb.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  16. Rogers LD, Foster LJ (2007) The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum. Proc Natl Acad Sci U S A 104(47):18520–18525. https://doi.org/10.1073/pnas.0705801104

    Article  PubMed  PubMed Central  Google Scholar 

  17. Trost M, English L, Lemieux S, Courcelles M, Desjardins M, Thibault P (2009) The phagosomal proteome in interferon-gamma-activated macrophages. Immunity 30(1):143–154. https://doi.org/10.1016/j.immuni.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  18. Colas C, Menezes S, Gutierrez-Martinez E, Pean CB, Dionne MS, Guermonprez P (2014) An improved flow cytometry assay to monitor phagosome acidification. J Immunol Methods 412:1–13. https://doi.org/10.1016/j.jim.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  19. Schnettger L, Rodgers A, Repnik U, Lai RP, Pei G, Verdoes M, Wilkinson RJ, Young DB, Gutierrez MG (2017) A Rab20-dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity. Cell Host Microbe 21(5):619–628 e615. https://doi.org/10.1016/j.chom.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernard EM, Fearns A, Bussi C, Santucci P, Peddie CJ, Lai RJ, Collinson LM, Gutierrez MG (2020) M. tuberculosis infection of human iPSC-derived macrophages reveals complex membrane dynamics during xenophagy evasion. J Cell Sci 134(5). https://doi.org/10.1242/jcs.252973

  21. Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JA, Bennett H, Jones AT (2004) A role for the small GTPase Rab21 in the early endocytic pathway. J Cell Sci 117(Pt 26):6297–6311. https://doi.org/10.1242/jcs.01560

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Edwards JP, Mosser DM (2009) The expression of exogenous genes in macrophages: obstacles and opportunities. Methods Mol Biol 531:123–143. https://doi.org/10.1007/978-1-59745-396-7_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766. https://doi.org/10.1016/j.cell.2004.11.038

    Article  CAS  PubMed  Google Scholar 

  24. Bussi C, Gutierrez MG (2019) Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev 43(4):341–361. https://doi.org/10.1093/femsre/fuz006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pellegrino E, Gutierrez MG (2021) Human stem cell-based models for studying host-pathogen interactions. Cell Microbiol 23(7):e13335. https://doi.org/10.1111/cmi.13335

    Article  CAS  PubMed  Google Scholar 

  26. Lerner TR, Borel S, Greenwood DJ, Repnik U, Russell MR, Herbst S, Jones ML, Collinson LM, Griffiths G, Gutierrez MG (2017) Mycobacterium tuberculosis replicates within necrotic human macrophages. J Cell Biol 216(3):583–594. https://doi.org/10.1083/jcb.201603040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cebrian I, Visentin G, Blanchard N, Jouve M, Bobard A, Moita C, Enninga J, Moita LF, Amigorena S, Savina A (2011) Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147(6):1355–1368. https://doi.org/10.1016/j.cell.2011.11.021

    Article  CAS  PubMed  Google Scholar 

  28. Bronietzki M, Kasmapour B, Gutierrez MG (2014) Study of phagolysosome biogenesis in live macrophages. J Vis Exp 85. https://doi.org/10.3791/51201

  29. de Souza Carvalho C, Kasmapour B, Gronow A, Rohde M, Rabinovitch M, Gutierrez MG (2011) Internalization, phagolysosomal biogenesis and killing of mycobacteria in enucleated epithelial cells. Cell Microbiol 13(8):1234–1249. https://doi.org/10.1111/j.1462-5822.2011.01615.x

    Article  CAS  PubMed  Google Scholar 

  30. Pei G, Repnik U, Griffiths G, Gutierrez MG (2014) Identification of an immune-regulated phagosomal Rab cascade in macrophages. J Cell Sci 127(Pt 9):2071–2082. https://doi.org/10.1242/jcs.144923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wigley P, Hulme SD, Powers C, Beal RK, Berchieri A Jr, Smith A, Barrow P (2005) Infection of the reproductive tract and eggs with Salmonella enterica serovar pullorum in the chicken is associated with suppression of cellular immunity at sexual maturity. Infect Immun 73(5):2986–2990. https://doi.org/10.1128/IAI.73.5.2986-2990.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the host-pathogen interactions in tuberculosis laboratory for useful discussions and comments on the manuscript. This work was supported by the Francis Crick Institute (to MGG), which receives its core funding from Cancer Research UK (FC001092), the UK Medical Research Council (FC001092), and the Wellcome Trust (FC001092). This project has received funding from the European Research Council [31] under the European Union’s Horizon 2020 research and innovation program (grant agreement n° 772022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiliano G. Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arévalo, P.R., Aylan, B., Gutierrez, M.G. (2023). Quantitative Spatio-temporal Analysis of Phagosome Maturation in Live Cells. In: Botelho, R.J. (eds) Phagocytosis and Phagosomes. Methods in Molecular Biology, vol 2692. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3338-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3338-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3337-3

  • Online ISBN: 978-1-0716-3338-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics