Skip to main content

Genetic and Phenotypic Analysis of Ovule Development in Arabidopsis

  • Protocol
  • First Online:
Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2686))

  • 826 Accesses

Abstract

The plant seed is a remarkable structure that represents the single most important energy source in global diets. The stages of reproductive growth preceding seed formation are particularly important since they influence the number, size, and quality of seed produced. The progenitor of the seed is the ovule, a multicellular organ that produces a female gametophyte while maintaining a range of somatic ovule cells to protect the seed and ensure it receives maternal nourishment. Ovule development has been well characterized in Arabidopsis using a range of molecular, genetic, and cytological assays. These can provide insight into the mechanistic basis for ovule development, and opportunities to explore its evolutionary conservation. In this chapter, we describe some of these methods and tools that can be used to investigate early ovule development and cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinto SC, Mendes MA, Coimbra S, Tucker MR (2019) Revisiting the female germline and its expanding toolbox. Trends Plant Sci 24:455–467. https://doi.org/10.1016/j.tplants.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  2. Galbiati F, Sinha Roy D, Simonini S et al (2013) An integrative model of the control of ovule primordia formation. Plant J 76:446–455. https://doi.org/10.1111/tpj.12309

    Article  CAS  PubMed  Google Scholar 

  3. Khan D, Millar JL, Girard IJ et al (2015) Transcriptome atlas of the Arabidopsis funiculus--a study of maternal seed subregions. Plant J 82:41–53. https://doi.org/10.1111/tpj.12790

    Article  CAS  PubMed  Google Scholar 

  4. Creff A, Brocard L, Ingram G (2015) A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat. Nat Commun 6:6382. https://doi.org/10.1038/ncomms7382

    Article  CAS  PubMed  Google Scholar 

  5. Wilkinson LG, Tucker MR (2017) An optimised clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils. Plant Methods 13:67. https://doi.org/10.1186/s13007-017-0217-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt A, Wuest SE, Vijverberg K et al (2011) Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biol 9:e1001155. https://doi.org/10.1371/journal.pbio.1001155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drews GN, Koltunow AM (2011) The female gametophyte. Arabidopsis Book 9:e0155. https://doi.org/10.1199/tab.0155

    Article  PubMed  PubMed Central  Google Scholar 

  8. Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M et al (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632. https://doi.org/10.1038/nature08828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Musial K, Koscinska-Pajak M, Antolec R, Joachimiak AJ (2015) Deposition of callose in young ovules of two Taraxacum species varying in the mode of reproduction. Protoplasma 252:135–144. https://doi.org/10.1007/s00709-014-0654-8

    Article  PubMed  Google Scholar 

  10. Payne T, Johnson SD, Koltunow AM (2004) KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131:3737–3749. https://doi.org/10.1242/dev.01216

    Article  CAS  PubMed  Google Scholar 

  11. Rinne PL, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485

    Article  CAS  PubMed  Google Scholar 

  12. Coimbra S, Almeida J, Junqueira V et al (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035. https://doi.org/10.1093/jxb/erm259

    Article  CAS  PubMed  Google Scholar 

  13. Lora J, Herrero M, Tucker MR, Hormaza JI (2017) The transition from somatic to germline identity shows conserved and specialized features during angiosperm evolution. New Phytol 216:495–509. https://doi.org/10.1111/nph.14330

    Article  CAS  PubMed  Google Scholar 

  14. Reiser L, Fischer RL (1993) The ovule and the embryo sac. Plant Cell 5:1291–1301. https://doi.org/10.1105/tpc.5.10.1291

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bencivenga S, Colombo L, Masiero S (2011) Cross talk between the sporophyte and the megagametophyte during ovule development. Sex Plant Reprod 24:113–121. https://doi.org/10.1007/s00497-011-0162-3

    Article  PubMed  Google Scholar 

  16. Chevalier E, Loubert-Hudon A, Zimmerman EL, Matton DP (2011) Cell-cell communication and signalling pathways within the ovule: from its inception to fertilization. New Phytol 192:13–28. https://doi.org/10.1111/j.1469-8137.2011.03836.x

    Article  CAS  PubMed  Google Scholar 

  17. Robinson-Beers K, Pruitt RE, Gasser CS (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4:1237–1249. https://doi.org/10.1105/tpc.4.10.1237

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gross-Hardt R, Lenhard M, Laux T (2002) WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:1129–1138. https://doi.org/10.1101/gad.225202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Musielak TJ, Schenkel L, Kolb M et al (2015) A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod 28:161–169. https://doi.org/10.1007/s00497-015-0267-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Slane D, Bürgel P, Bayer M (2017) Staining and clearing of Arabidopsis reproductive tissue for imaging of fluorescent proteins. In: Schmidt A (ed) Plant germline development: methods and protocols. Springer, New York, pp 87–94

    Chapter  Google Scholar 

  21. Schneitz K, Hülskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749. https://doi.org/10.1046/j.1365-313X.1995.07050731.x

    Article  Google Scholar 

  22. Knox JP, Linstead PJ, Cooper JPC, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1:317–326. https://doi.org/10.1046/j.1365-313X.1991.t01-9-00999.x

    Article  CAS  PubMed  Google Scholar 

  23. Mayer KFX, Rogers J, Dolezel J et al (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. https://doi.org/10.1126/science.1251788

    Article  CAS  Google Scholar 

  24. Tucker MR, Okada T, Hu Y et al (2012) Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139:1399–1404. https://doi.org/10.1242/dev.075390

    Article  CAS  PubMed  Google Scholar 

  25. Tucker MR, Hinze A, Tucker EJ et al (2008) Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135:2839–2843. https://doi.org/10.1242/dev.023648

    Article  CAS  PubMed  Google Scholar 

  26. Vidal S, Lombardero M, Sanchez P et al (1995) An easy method for the removal of Epon resin from semi-thin sections. Application of the avidin-biotin technique. Histochem J 27:204–209

    Article  CAS  PubMed  Google Scholar 

  27. Werner D, Gerlitz N, Stadler R (2011) A dual switch in phloem unloading during ovule development in Arabidopsis. Protoplasma 248:225–235. https://doi.org/10.1007/s00709-010-0223-8

    Article  PubMed  Google Scholar 

  28. Brambilla V, Battaglia R, Colombo M et al (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:2544–2556. https://doi.org/10.1105/tpc.107.051797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodkiewicz B (1970) Callose in cell walls during megasporogenesis in angiosperms. Planta 93:39–47

    Article  CAS  PubMed  Google Scholar 

  30. Pereira AM, Lopes AL, Coimbra S (2016) JAGGER, an AGP essential for persistent synergid degeneration and polytubey block in Arabidopsis. Plant Signal Behav 11:e1209616. https://doi.org/10.1080/15592324.2016.1209616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burton RA, Collins HM, Kibble NAJ et al (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure. Plant Biotechnol J 9:117–135. https://doi.org/10.1111/j.1467-7652.2010.00532.x

    Article  CAS  PubMed  Google Scholar 

  32. Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4:5864. https://doi.org/10.7554/eLife.05864

    Article  Google Scholar 

  33. Tucker MR, Lou H, Aubert MK et al (2018) Exploring the role of cell wall-related genes and polysaccharides during plant development. Plants (Basel) 7:42. https://doi.org/10.3390/plants7020042

    Article  CAS  PubMed  Google Scholar 

  34. Acosta-García G, Vielle-Calzada J-P (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628. https://doi.org/10.1105/tpc.104.024588

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767. https://doi.org/10.1105/tpc.2.8.755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liljegren SJ, Ditta GS, Eshed Y et al (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770. https://doi.org/10.1038/35008089

    Article  CAS  PubMed  Google Scholar 

  37. Okada T, Hu Y, Tucker MR et al (2013) Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis. Plant Physiol 163:216–231. https://doi.org/10.1104/pp.113.219485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Tucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bird, D.C., Ma, C., Pinto, S., Leong, W.H., Tucker, M.R. (2023). Genetic and Phenotypic Analysis of Ovule Development in Arabidopsis. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3299-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3298-7

  • Online ISBN: 978-1-0716-3299-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics