Skip to main content

A Simple Ca2+-Imaging Approach of Network-Activity Analyses for Human Neurons

  • Protocol
  • First Online:
Stem Cell-Based Neural Model Systems for Brain Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2683))

  • 1090 Accesses

Abstract

Rapid advances in light microscopy and development of all-optical electrophysiological imaging tools have greatly leveraged the speed and the depth of neurobiology studies. Calcium imaging is a common method that is useful for measuring calcium signals in cells and has been used as a functional proxy for neuronal activity. Here I describe a simple, stimulation-free approach that measures neuronal network activity and single-neuron dynamics in human neurons. This protocol provides the experimental workflow that includes step-wise illustrations of sample preparations, data processing, and analyses that can be used for quick phenotypical assessment and serves as a quick functional readout for mutagenesis or screen effort for neurodegenerative studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885

    Article  CAS  PubMed  Google Scholar 

  2. Stringer C, Pachitariu M (2019) Computational processing of neural recordings from calcium imaging data. Curr Opin Neurobiol 55:22–31

    Article  CAS  PubMed  Google Scholar 

  3. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10(5):413–420

    Article  CAS  PubMed  Google Scholar 

  4. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer MJ (2013) Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci 16(3):264–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13(11):1433–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheffield ME, Dombeck DA (2015) Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517(7533):200–204

    Article  CAS  PubMed  Google Scholar 

  7. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brewer GJ, Boehler MD, Pearson RA, DeMaris AA, Ide AN, Wheeler BC (2009) Neuron network activity scales exponentially with synapse density. J Neural Eng 6(1):014001

    Article  CAS  PubMed  Google Scholar 

  9. Verstraelen P, Pintelon I, Nuydens R, Cornelissen F, Meert T, Timmermans JP (2014) Pharmacological characterization of cultivated neuronal networks: relevance to synaptogenesis and synaptic connectivity. Cell Mol Neurobiol 34(5):757–776

    Article  PubMed  Google Scholar 

  10. Fan LZ, Nehme R, Adam Y, Jung ES, Wu H, Eggan K, Arnold DB, Cohen AE (2018) All-optical synaptic electrophysiology probes mechanism of ketamine-induced disinhibition. Nat Methods 15(10):823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams LA, Joshi V, Murphy M, Ferrante J, Werley CA, Brookings T, McManus O, Grosse J, Davies CH, Dempsey GT (2019) Scalable measurements of intrinsic excitability in human iPS cell-derived excitatory neurons using all-optical electrophysiology. Neurochem Res 44(3):714–725

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Miao Y, Wicklein R, Sun Z, Wang J, Jude KM, Fernandes RA, Merrill SA, Wernig M, Garcia KC, Sudhof TC (2022) RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell 185(1):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patzke C, Dai J, Brockmann MM, Sun Z, Fenske P, Rosenmund C, Sudhof TC (2021) Cannabinoid receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human synapses. Mol Psychiatry 26(11):6253–6268

    Article  CAS  PubMed  Google Scholar 

  14. Sun Z, Sudhof TC (2021) A simple Ca(2+)-imaging approach to neural network analyses in cultured neurons. J Neurosci Methods 349:109041

    Article  CAS  PubMed  Google Scholar 

  15. Tsetsenis T (2017) Monitoring synapses via trans-synaptic GFP complementation. Methods Mol Biol 1538:45–52

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W, Yang N, Danko T, Chen L, Wernig M, Sudhof TC (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78(5):785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun Z, Südhof TC (2020) A simple Ca2+-imaging approach to neural network analysis in cultured neurons. bioRxiv 2020.08.09.243576; https://doi.org/10.1101/2020.08.09.243576

  18. Uhlen P (2004) Spectral analysis of calcium oscillations. Sci STKE 2004(258):pl15

    Article  PubMed  Google Scholar 

  19. Wu M, Wu X, De Camilli P (2013) Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations. Proc Natl Acad Sci U S A 110(4):1339–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bortone D, Polleux F (2009) KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62(1):53–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, Z. (2023). A Simple Ca2+-Imaging Approach of Network-Activity Analyses for Human Neurons. In: Huang, YW.A., Pak, C. (eds) Stem Cell-Based Neural Model Systems for Brain Disorders. Methods in Molecular Biology, vol 2683. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3287-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3287-1_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3286-4

  • Online ISBN: 978-1-0716-3287-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics