Skip to main content

Cell–Cell Fusion Assays to Study Henipavirus Entry and Evaluate Therapeutics

  • Protocol
  • First Online:
Nipah Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2682))

Abstract

Henipaviruses include the deadly zoonotic Nipah (NiV) and Hendra (HeV) paramyxoviruses, which have caused recurring outbreaks in human populations. A hallmark of henipavirus infection is the induction of cell–cell fusion (syncytia), caused by the expression of the attachment (G) and fusion (F) glycoproteins on the surface of infected cells. The interactions of G and F with each other and with receptors on cellular plasma membranes drive both viral entry and syncytia formation and are thus of great interest. While F shares structural and functional homologies with class I fusion proteins of other viruses such as influenza and human immunodeficiency viruses, the intricate interactions between the G and F glycoproteins allow for unique approaches to studying the class I membrane fusion process. This allows us to study cell–cell fusion and viral entry kinetics for BSL-4 pathogens such as NiV and HeV under BSL-2 conditions using recombinant DNA techniques. Here, we present approaches to studying henipavirus-induced membrane fusion for currently identified and emerging henipaviruses, including more traditional syncytia counting-based cell–cell fusion assay and a new heterologous fluorescent dye exchange cell–cell fusion assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. (a) Organization, W. H. List of Blueprint priority diseases http://www.who.int/blueprint/priority-diseases/en/; (b) Organization, W. H. Nipah virus outbreaks in the WHO South-East Asia Region. http://www.searo.who.int/entity/emerging_diseases/links/nipah_virus_outbreaks_sear/en/. Accessed 12 Sept 2017; (c) Sharma V, Kaushik S, Kumar R, Yadav JP (2019) Emerging trends of Nipah virus: a review. Rev Med Virol 29(1):6

  2. (a) Atherstone C, Diederich S, Weingartl H. M, Fischer K, Balkema-Buschmann A, Grace D, Alonso S, Dhand NK, Ward MP, Mor SM (2019) Evidence of exposure to henipaviruses in domestic pigs in Uganda. Transbound Emerg Dis 66(2):921–928; (b) Kessler MK, Becker DJ, Peel AJ, Justice NV, Lunn T, Crowley DE, Jones DN, Eby P, Sanchez CA, Plowright RK (2018) Changing resource landscapes and spillover of henipaviruses. Ann N Y Acad Sci 1429(1):78–99; (c) Pernet O, Schneider BS, Beaty SM, LeBreton M, Yun TE, Park A, Zachariah TT, Bowden TA, Hitchens P, Ramirez CM, Daszak P, Mazet J, Freiberg AN, Wolfe ND, Lee B (2014) Evidence for henipavirus spillover into human populations in Africa. Nat Commun 5:10

    Google Scholar 

  3. (a) Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Malik YS, Singh R, Chaicumpa W, Mourya DT (2019) Nipah virus: epidemiology pathology immunobiology and advances in diagnosis vaccine designing and control strategies – a comprehensive review. Vet Q 39(1):26–55; (b) Satterfield BA, Dawes BE, Milligan GN (2016) Status of vaccine research and development of vaccines for Nipah virus. Vaccine 34(26):2971–2975; (c) Pernet O, Wang YE, Lee B (2012) Henipavirus receptor usage and tropism. In: Lee B, Rota PA (eds) Henipavirus: ecology molecular virology and pathogenesis, vol 359. Springer, Berlin, pp 59–78; (d) Aguilar HC, Iorio RM (2012) Henipavirus membrane fusion and viral entry. In: Lee B, Rota PA (eds) Henipavirus: ecology molecular virology and pathogenesis, vol 359. Springer, Berlin, pp 79–94; (e) Rockx B, Winegar R, Freiberg AN (2012) Recent progress in henipavirus research: molecular biology genetic diversity animal models. Antivir Res 95(2):135–149; (f) Aguilar HC, Lee B (2011) Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Rev Mol Med 13:19; (g) Lee B, Ataman ZA (2011) Modes of paramyxovirus fusion: a Henipavirus perspective. Trends Microbiol 19(8):389–399

    Google Scholar 

  4. (a) Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B (2005) EphrinB2 is the entry receptor for Nipah virus an emergent deadly paramyxovirus. Nature 436(7049):401–405; (b) Negrete OA, Chu D, Aguilar HC, Lee B (2007) Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish EphrinB2 from EphrinB3 usage. J Virol 81(19):10804–10814; (c) Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungal BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC (2005) Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102(30):10652–10657

    Google Scholar 

  5. (a) Xu YH, Gao S, Cole DK, Zhu JJ, Su N, Wang H, Gao GF, Rao ZH (2004) Basis for fusion inhibition by peptides: analysis of the heptad repeat regions of the fusion proteins from Nipah and Hendra viruses newly emergent zoonotic paramyxoviruses. Biochem Biophys Res Commun 315(3):664–670; (b) Bossart KN, Mungall BA, Crameri G, Wang LF, Eaton BT, Broder CC (2005) Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein. Virol J 2:15

    Google Scholar 

  6. (a) Aguilar HC, Ataman ZA, Aspericueta V, Fang AQ, Stroud M, Negrete OA, Kammerer RA, Lee BA (2009) Novel receptor-induced activation site in the Nipah virus attachment glycoprotein (G) involved in triggering the fusion glycoprotein (F). J Biol Chem 284(3):1628–1635; (b) Liu Q, Bradel-Tretheway B, Monreal AI, Saludes JP, Lu XN, Nicola AV, Aguilar HC (2015) Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J Virol 89(3):1838–1850; (c) Liu Q, Stone JA, Bradel-Tretheway B, Dabundo J, Montano JAB, Santos-Montanez J, Biering SB, Nicola AV, Iorio RM, Lu XN, Aguilar HC (2013) Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry. PLoS Pathog 9(11):12; (d) Biering SB, Huang A, Vu AT, Robinson LR, Bradel-Tretheway B, Choi E, Lee B, Aguilar HC (2012) N-Glycans on the Nipah virus attachment glycoprotein modulate fusion and viral entry as they protect against antibody neutralization. J Virol 86(22):11991–12002; (e) Aguilar HC, Aspericueta V, Robinson LR, Aanensen KE, Lee B (2010) A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the Nipah virus membrane fusion Cascade. J Virol 84(16):8033–8041

    Google Scholar 

  7. (a) Jiang SB, Lin K, Strick N, Neurath AR (1993) HIV-1 INHIBITION BY A PEPTIDE. Nature 365(6442):113–113; (b) Wild C, Greenwell T, Matthews T (1993) A synthetic peptide from HIV-1 GP41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retrovir 9(11):1051–1053

    Google Scholar 

  8. (a) Johnson JB, Aguilar HC, Lee B, Parks GD (2011) Interactions of human complement with virus particles containing the Nipah virus glycoproteins. J Virol 85(12):5940–5948; (b) Erbar S, Maisner A (2010) Nipah virus infection and glycoprotein targeting in endothelial cells. Virol J 7:10; (c) Whitt MA (2010) Generation of VSV pseudotypes using recombinant Delta G-VSV for studies on virus entry identification of entry inhibitors and immune responses to vaccines. J Virol Methods 169(2):365–374

    Google Scholar 

  9. Nakane S, Matsuda Z (2015) Dual Split protein (DSP) assay to monitor cell-cell membrane fusion. In: Pfannkuche K (ed) Cell fusion: overviews and methods, 2nd edn. Humana Press Inc, Totowa, pp 229–236

    Chapter  Google Scholar 

  10. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector C. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Monreal, I.A., Aguilar, H.C. (2023). Cell–Cell Fusion Assays to Study Henipavirus Entry and Evaluate Therapeutics. In: Freiberg, A.N., Rockx, B. (eds) Nipah Virus. Methods in Molecular Biology, vol 2682. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3283-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3283-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3282-6

  • Online ISBN: 978-1-0716-3283-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics