Skip to main content

Methodologies for Scalable Production of High-Quality Purified Small Extracellular Vesicles from Conditioned Medium

  • Protocol
  • First Online:
Cell-Secreted Vesicles

Abstract

The development of an extracellular vesicles (EV)-based therapeutic product requires the implementation of reproducible and scalable, purification protocols for clinical-grade EV. Commonly used isolation methods including ultracentrifugation, density gradient centrifugation, size exclusion chromatography, and polymer-based precipitation, faced limitations such as yield efficiency, EV purity, and sample volume. We developed a GMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving, tangential flow filtration (TFF). We applied this purification method for the isolation of EV from conditioned medium (CM) of cardiac stromal cells, namely cardiac progenitor cells (CPC) which has been shown to possess potential therapeutical application in heart failure. Conditioned medium collection and EV isolation using TFF demonstrated consistent particle recovery (~1013 particle/mL) enrichment of small/medium-EV subfraction (range size 120–140 nm). EV preparations achieved a 97% reduction of major protein-complex contaminant and showed unaltered biological activity. The protocol describes methods to assess EV identity and purity as well as procedures to perform downstream applications including functional potency assay and quality control tests. The large-scale manufacturing of GMP-grade EV represents a versatile protocol that can be easily applied to different cell sources for wide range of therapeutic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  PubMed  Google Scholar 

  2. Lo Cicero A, Stahl PD, Raposo G (2015) Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 35:69–77

    Article  CAS  PubMed  Google Scholar 

  3. Lionetti V, Barile L (2022) Fndc5/irisin-enriched extracellular vesicles: a new hormonal relay in the regular race against vascular ageing. Eur Heart J 43:4596. https://doi.org/10.1093/eurheartj/ehac517

    Article  PubMed  Google Scholar 

  4. Barile L et al (2018) Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-a. Cardiovasc Res 114:992–1005

    Article  CAS  PubMed  Google Scholar 

  5. Gangadaran P et al (2022) Interleukin-4 receptor targeting peptide decorated extracellular vesicles as a platform for in vivo drug delivery to thyroid cancer. Biomedicine 10:1978

    CAS  Google Scholar 

  6. Bellio MA et al (2022) Systemic delivery of large-scale manufactured Wharton’s jelly mesenchymal stem cell-derived extracellular vesicles improves cardiac function after myocardial infarction. J Cardiovasc Aging 2:9

    PubMed  PubMed Central  Google Scholar 

  7. Herman S, Fishel I, Offen D (2021) Intranasal delivery of mesenchymal stem cells-derived extracellular vesicles for the treatment of neurological diseases. Stem Cells 39:1589–1600

    Article  PubMed  Google Scholar 

  8. Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78

    Article  CAS  PubMed  Google Scholar 

  9. Barile L, Guzik TJ (2020) The swan song of dying cells. Cardiovasc Res 116:e90–e92

    Article  CAS  PubMed  Google Scholar 

  10. Estes S, Konstantinov K, Young JD (2022) Manufactured extracellular vesicles as human therapeutics: challenges, advances, and opportunities. Curr Opin Biotechnol 77:102776

    Article  CAS  PubMed  Google Scholar 

  11. Makkar RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  12. McDonald CM et al (2022) Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 399:1049–1058

    Article  CAS  PubMed  Google Scholar 

  13. Ishigami S et al (2015) Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res 116:653–664

    Article  CAS  PubMed  Google Scholar 

  14. Andriolo G et al (2021) GMP-grade methods for cardiac progenitor cells: cell Bank production and quality control. Methods Mol Biol 2286:131–166

    Article  CAS  PubMed  Google Scholar 

  15. Lötvall J et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913

    Article  PubMed  Google Scholar 

  16. Solomon J et al (2016) Current perspectives on the use of ancillary materials for the manufacture of cellular therapies. Cytotherapy 18:1–12

    Article  CAS  PubMed  Google Scholar 

  17. Andriolo G et al (2018) Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method. Front Physiol 9:1169

    Article  PubMed  PubMed Central  Google Scholar 

  18. Andriolo, G. et al. Device and method for producing and purifying exosomes. (2018)

    Google Scholar 

  19. Théry C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

    Article  PubMed  PubMed Central  Google Scholar 

  20. Davidson SM et al (2022) Methods for the identification and characterization of extracellular vesicles in cardiovascular studies - from exosomes to microvesicles. Cardiovasc Res cvac031. https://doi.org/10.1093/cvr/cvac031

  21. Eudralex Volume 4 - EU Guidelines for Good Manufacturing Practice for Medicinal Products for Human and Veterinary Use. https://health.ec.europa.eu/latest-updates/eudralex-volume-4-eu-guidelines-good-manufacturing-practice-medicinal-products-human-and-veterinary-2022-02-21_en

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Barile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andriolo, G. et al. (2023). Methodologies for Scalable Production of High-Quality Purified Small Extracellular Vesicles from Conditioned Medium. In: Vainio, S. (eds) Cell-Secreted Vesicles. Methods in Molecular Biology, vol 2668. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3203-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3203-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3202-4

  • Online ISBN: 978-1-0716-3203-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics