Skip to main content

Quantifying the Mechanical Properties of Yeast Candida albicans Using Atomic Force Microscopy-based Force Spectroscopy

  • Protocol
  • First Online:
Antifungal Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2667))

Abstract

Fungi can adapt to a wide range of environmental stresses in the wild and host milieu by employing their plastic genome and great diversity in morphology. Among different adaptive strategies, mechanical stimuli, such as changes in osmotic pressure, surface remodeling, hyphal formation, and cell divisions, could guide the physical cues into physiological responses through a complex signaling network. While fungal pathogens require a pressure-driven force to expand and penetrate host tissues, quantitatively studying the biophysical properties at the host–fungal interface is critical to understand the development of fungal diseases. Microscopy-based techniques have enabled researchers to monitor the dynamic mechanics on fungal cell surface in responses to the host stress and antifungal drugs. Here, we describe a label-free, high-resolution method based on atomic force microscopy, with a step-by-step protocol to measure the physical properties in human fungal pathogen Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Z, Nielsen K (2017) Morphology changes in human fungal pathogens upon interaction with the host. J Fungi (Basel) 3. https://doi.org/10.3390/jof3040066

  2. Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748

    Article  CAS  PubMed  Google Scholar 

  3. Gow NAR, Latge J-P, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016

  4. Chai LYA, Netea MG, Vonk AG, Kullberg B-J (2009) Fungal strategies for overcoming host innate immune response. Med Mycol 47:227–236

    Article  CAS  PubMed  Google Scholar 

  5. Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518

    Article  CAS  PubMed  Google Scholar 

  6. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erwig LP, Gow NAR (2016) Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14:163–176

    Article  CAS  PubMed  Google Scholar 

  9. Pillet F, Lemonier S, Schiavone M et al (2014) Uncovering by atomic force microscopy of an original circular structure at the yeast cell surface in response to heat shock. BMC Biol 12:6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hopke A, Brown AJP, Hall RA, Wheeler RT (2018) Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol 26:284–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bain JM, Louw J, Lewis LE et al (2014) Candida albicans hypha formation and mannan masking of β-glucan inhibit macrophage phagosome maturation. MBio 5:e01874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bain JM, Lewis LE, Okai B et al (2012) Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet Biol 49:677–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lewis LE, Bain JM, Lowes C et al (2012) Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog 8:e1002578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lenardon MD, Munro CA, Gow NAR (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brand A (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529

    Article  PubMed  Google Scholar 

  16. Crampin H, Finley K, Gerami-Nejad M et al (2005) Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118:2935–2947

    Article  CAS  PubMed  Google Scholar 

  17. O’Meara TR, Duah K, Guo CX et al (2018) High-throughput screening identifies genes required for candida albicans induction of macrophage pyroptosis. MBio 9. https://doi.org/10.1128/mBio.01581-18

  18. Bain JM, Alonso MF, Childers DS et al (2021) Immune cells fold and damage fungal hyphae. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2020484118

  19. Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  CAS  PubMed  Google Scholar 

  20. Gow NAR, Hube B (2012) Importance of the Candida albicans cell wall during commensalism and infection. Curr Opin Microbiol 15:406–412

    Article  CAS  PubMed  Google Scholar 

  21. Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18:310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Çolak A, Ikeh MAC, Nobile CJ, Baykara MZ (2020) In situ imaging of candida albicans hyphal growth via atomic force microscopy. mSphere 5. https://doi.org/10.1128/mSphere.00946-20

  23. El-Kirat-Chatel S, Beaussart A, Alsteens D et al (2013) Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale 5:1105–1115

    Article  CAS  PubMed  Google Scholar 

  24. Ryder LS, Lopez SG, Michels L et al (2022) Direct measurement of appressorium turgor using a molecular mechanosensor in the rice blast fungus Magnaporthe oryzae. bioRxiv 2022.08.30.505899

    Google Scholar 

  25. Ravishankar JP, Davis CM, Davis DJ et al (2001) Mechanics of solid tissue invasion by the mammalian pathogen Pythium insidiosum. Fungal Genet Biol 34:167–175

    Article  CAS  PubMed  Google Scholar 

  26. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Pen Y, Edyvean RG et al (2010) Adhesive and conformational behaviour of mycolic acid monolayers. Biochim Biophys Acta 1798:1829–1839

    Article  CAS  PubMed  Google Scholar 

  28. El-Kirat-Chatel S, Dufrêne YF (2016) Nanoscale adhesion forces between the fungal pathogen Candida albicans and macrophages. Nanoscale Horiz 1:69–74

    Article  CAS  PubMed  Google Scholar 

  29. Valotteau C, Prystopiuk V, Cormack BP, Dufrêne YF (2019) Atomic force microscopy demonstrates that candida glabrata uses three epa proteins to mediate adhesion to abiotic surfaces. mSphere 4. https://doi.org/10.1128/mSphere.00277-19

  30. Dufrêne YF, Viljoen A, Mignolet J, Mathelié-Guinlet M (2021) AFM in cellular and molecular microbiology. Cell Microbiol 23:e13324

    Article  PubMed  Google Scholar 

  31. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  32. Gavara N (2017) A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80:75–84

    Article  PubMed  Google Scholar 

  33. Han R, Chen J (2021) A modified Sneddon model for the contact between conical indenters and spherical samples. J Mater Res 36:1762–1771

    Article  CAS  Google Scholar 

  34. Johnson KL (1985) Contact mechanics. Cambridge University Press

    Book  Google Scholar 

  35. Chen J (2014) Nanobiomechanics of living cells: a review. Interface Focus 4:20130055

    Article  PubMed  PubMed Central  Google Scholar 

  36. Formosa C, Schiavone M, Martin-Yken H et al (2013) Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans. Antimicrob Agents Chemother 57:3498–3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The work is supported by the Royal Society Research Grant RGS\R2\202400 to H-J. T.; Engineering and Physical Science Research Council Grants EP/V029762/1 to Z.J.Z. and EP/R511845/1 to C.R.J.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenyu Jason Zhang or Hung-Ji Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jones, C.R., Zhang, Z.J., Tsai, HJ. (2023). Quantifying the Mechanical Properties of Yeast Candida albicans Using Atomic Force Microscopy-based Force Spectroscopy. In: Drummond, R.A. (eds) Antifungal Immunity. Methods in Molecular Biology, vol 2667. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3199-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3199-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3198-0

  • Online ISBN: 978-1-0716-3199-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics