Skip to main content

Microvillar Cartography: A Super-Resolution Single-Molecule Imaging Method to Map the Positions of Membrane Proteins with Respect to Cellular Surface Topography

  • Protocol
  • First Online:
The Immune Synapse

Abstract

We describe microvillar cartography (MC), a method to map proteins on cellular surfaces with respect to the membrane topography. The surfaces of many cells are not smooth, but are rather covered with various protrusions such as microvilli. These protrusions may play key roles in multiple cellular functions, due to their ability to control the distribution of specific protein assemblies on the cell surface. Thus, for example, we have shown that the T-cell receptor and several of its proximal signaling proteins reside on microvilli, while others are excluded from these projections. These results have indicated that microvilli can function as key signaling hubs for the initiation of the immune response. MC has facilitated our observations of particular surface proteins and their specialized distribution on microvillar and non-microvillar compartments. MC combines membrane topography imaging, using variable-angle total internal microscopy, with stochastic localization nanoscopy, which generates deep sub-diffraction maps of protein distribution. Since the method is based on light microscopy, it avoids some of the pitfalls inherent to electron-microscopy-based techniques, such as dehydration, the need for carbon coating, and immunogold clustering, and is amenable to future developments involving, for example, live-cell imaging. This protocol details the procedures we developed for MC, which can be readily adopted to study a broad range of cell-surface molecules and dissect their distribution within distinct surface assemblies under multiple cell activation states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sauvanet C, Wayt J, Pelaseyed T, Bretscher A (2015) Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu Rev Cell Dev Biol 31:593–621. https://doi.org/10.1146/annurev-cellbio-100814-125234

    Article  CAS  PubMed  Google Scholar 

  2. Majstoravich S, Zhang J, Nicholson-Dykstra S, Linder S, Friedrich W, Siminovitch KA, Higgs HN (2004) Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104(5):1396–1403. https://doi.org/10.1182/blood-2004-02-0437

    Article  CAS  PubMed  Google Scholar 

  3. Cai E, Marchuk K, Beemiller P, Beppler C, Rubashkin MG, Weaver VM, Gerard A, Liu TL, Chen BC, Betzig E, Bartumeus F, Krummel MF (2017) Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science 356(6338). https://doi.org/10.1126/science.aal3118

  4. Yi JC, Samelson LE (2016) Microvilli set the stage for T-cell activation. Proc Natl Acad Sci U S A 113(40):11061–11062. https://doi.org/10.1073/pnas.1613832113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19(17):R762–R771. https://doi.org/10.1016/j.cub.2009.06.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Keren K, Pincus Z, Allen GM, Barnhart EL, Marriott G, Mogilner A, Theriot JA (2008) Mechanism of shape determination in motile cells. Nature 453(7194):475–480. https://doi.org/10.1038/nature06952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9(6):446–454. https://doi.org/10.1038/nrm2406

    Article  CAS  PubMed  Google Scholar 

  8. von Andrian UH, Hasslen SR, Nelson RD, Erlandsen SL, Butcher EC (1995) A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82(6):989–999. https://doi.org/10.1016/0092-8674(95)90278-3

    Article  Google Scholar 

  9. Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, Alon R, Haran G (2016) Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci U S A 113(40):E5916–E5924. https://doi.org/10.1073/pnas.1605399113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghosh S, Di Bartolo V, Tubul L, Shimoni E, Kartvelishvily E, Dadosh T, Feigelson SW, Alon R, Alcover A, Haran G (2020) ERM-dependent assembly of T cell receptor signaling and Co-stimulatory molecules on microvilli prior to activation. Cell Rep 30(10):3434–3447 e3436. https://doi.org/10.1016/j.celrep.2020.02.069

    Article  CAS  PubMed  Google Scholar 

  11. Sage PT, Varghese LM, Martinelli R, Sciuto TE, Kamei M, Dvorak AM, Springer TA, Sharpe AH, Carman CV (2012) Antigen recognition is facilitated by invadosome-like protrusions formed by memory/effector T cells. J Immunol 188(8):3686–3699. https://doi.org/10.4049/jimmunol.1102594

    Article  CAS  PubMed  Google Scholar 

  12. Razvag Y, Neve-Oz Y, Sajman J, Reches M, Sherman E (2018) Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nat Commun 9(1):732. https://doi.org/10.1038/s41467-018-03127-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh S, Feigelson SW, Montresor A, Shimoni E, Roncato F, Legler DF, Laudanna C, Haran G, Alon R (2021) CCR7 signalosomes are preassembled on tips of lymphocyte microvilli in proximity to LFA-1. Biophys J 120(18):4002–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCarthy DA, Macey MG, Cahill MR, Newland AC (1994) Effect of fixation on quantification of the expression of leucocyte function-associated surface antigens. Cytometry 17(1):39–49. https://doi.org/10.1002/cyto.990170106

    Article  CAS  PubMed  Google Scholar 

  15. Sundd P, Gutierrez E, Pospieszalska MK, Zhang H, Groisman A, Ley K (2010) Quantitative dynamic footprinting microscopy reveals mechanisms of neutrophil rolling. Nat Methods 7(10):821–824. https://doi.org/10.1038/nmeth.1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Methods Enzymol 361:1–33. https://doi.org/10.1016/s0076-6879(03)61003-7

    Article  CAS  PubMed  Google Scholar 

  17. Stock K, Sailer R, Strauss WSL, Lyttek M, Steiner R, Schneckenburger H (2003) Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device. J Microsc (Oxford) 211:19–29. https://doi.org/10.1046/j.1365-2818.2003.01200.x

    Article  CAS  Google Scholar 

  18. Truskey GA, Burmeister JS, Grapa E, Reichert WM (1992) Total Internal-Reflection Fluorescence Microscopy (TIRFM). 2. Topographical mapping of relative cell substratum separation distances. J Cell Sci 103:491–499. https://doi.org/10.1529/biophysj.105.066738

  19. van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009. https://doi.org/10.1038/nprot.2011.336

    Article  CAS  PubMed  Google Scholar 

  20. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jensen KH, Berg RW (2016) CLARITY-compatible lipophilic dyes for electrode marking and neuronal tracing. Sci Rep 6:32674. https://doi.org/10.1038/srep32674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rea R, Li J, Dharia A, Levitan ES, Sterling P, Kramer RH (2004) Streamlined synaptic vesicle cycle in cone photoreceptor terminals. Neuron 41(5):755–766. https://doi.org/10.1016/s0896-6273(04)00088-1

    Article  CAS  PubMed  Google Scholar 

  23. Sharp MD, Pogliano K (1999) An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci U S A 96(25):14553–14558. https://doi.org/10.1073/pnas.96.25.14553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ajo-Franklin CM, Ganesan PV, Boxer SG (2005) Variable incidence angle fluorescence interference contrast microscopy for z-imaging single objects. Biophys J 89(4):2759–2769. https://doi.org/10.1529/biophysj.105.066738

  25. Wolter S, Loschberger A, Holm T, Aufmkolk S, Dabauvalle MC, van de Linde S, Sauer M (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9(11):1040–1041. https://doi.org/10.1038/nmeth.2224

    Article  CAS  PubMed  Google Scholar 

  26. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340. https://doi.org/10.1038/nmeth0510-339

    Article  CAS  PubMed  Google Scholar 

  27. Nieuwenhuizen RP, Lidke KA, Bates M, Puig DL, Grunwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10(6):557–562. https://doi.org/10.1038/nmeth.2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Sara W. Feigelson and Ronen Alon of the Weizmann Institute of Science, Israel, and Dr. Yunmin Jung of the Institute for Basic Science Center for Nanomedicine, Seoul, Korea, for their kind involvement in this project and for their advice. G.H. is the incumbent of the Hilda Pomeraniec Memorial Professorial Chair.

Data Availability

Sample datasets for “microvillar cartography” and “co-localization probability” analysis can be downloaded from the “BioImage archive” using the links given below:

Microvillar Cartography data: https://www.ebi.ac.uk/biostudies/studies/S-BSST520 (Accession: S-BSST520)

Co-localization Probability Data: https://www.ebi.ac.uk/biostudies/studies/S-BSST521 (Accession: S-BSST521)

All other data generated during and/or analyzed during studies similar to those detailed above are available from the corresponding author upon request.

Code Availability

The custom MATLAB code described in this study can be found in the following link in the Github repository:

https://github.com/shirsendughosh/Micorvillar-Catography-and-Colocalization-Probability-Code.

The code is accompanied by operation instructions in the file “step by step guide to run analysis codes.pdf.” It can be accessed and used by readers without restriction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilad Haran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ghosh, S., Alcover, A., Haran, G. (2023). Microvillar Cartography: A Super-Resolution Single-Molecule Imaging Method to Map the Positions of Membrane Proteins with Respect to Cellular Surface Topography. In: Baldari, C.T., Dustin, M.L. (eds) The Immune Synapse. Methods in Molecular Biology, vol 2654. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3135-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3135-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3134-8

  • Online ISBN: 978-1-0716-3135-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics