Skip to main content

Designing Knowledge-Based Bioremediation Strategies Using Metagenomics

  • Protocol
  • First Online:
Metagenomic Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2649))

Abstract

Functional capacities for bioremediation are governed by metabolic mechanisms of inhabiting microbial communities at polluted niches. Process fluctuations lead to stress scenarios where microbes evolve continuously to adapt to sustain the harsh conditions. The biological wastewater treatment (WWT) process harbors the potential of these catabolic microbes for the degradation of organic molecules. In a typical biological WWT or soil bioremediation process, several microbial species coexist which code for enzymes that degrade complex compounds.

High throughput DNA sequencing techniques for microbiome analysis in bioremediation processes have led to a powerful paradigm revealing the significance of metabolic functions and microbial diversity. The present chapter describes techniques in taxonomy and functional gene analysis for understanding bioremediation potential and novel strategies built on in silico analysis for the improvisation of existing aerobic wastewater treatment methods. Methods explaining comparative metagenomics by Metagenome Analysis server (MG-RAST) are described with successful case studies by focusing on industrial wastewaters and soil bioremediation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kapley A, Jadeja NB, Paliwal V et al (2016) Microbial genomics and bioremediation of industrial wastewater. In: Environmental waste management, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  2. Kapley A, Purohit HJ (2009) Diagnosis of treatment efficiency in industrial WWT plants: a case study at a refinery. ETP Environ Sci Technol 43:3789–3795

    Article  CAS  PubMed  Google Scholar 

  3. Kapley A, Prasad S, Purohit HJ (2007) Changes in microbial diversity in fed-batch reactor operation with wastewater containing nitroaromatic residues. Bioresour Technol 98:2479–2484

    Article  CAS  PubMed  Google Scholar 

  4. Kapley A, Liu R, Jadeja NB et al (2015) Shifts in microbial community and its correlation with degradative efficiency in a WWT plant. Appl Biochem Biotechnol 176:2131–2143

    Article  CAS  PubMed  Google Scholar 

  5. Rani A, Porwal S, Sharma R et al (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99:7098–7107

    Article  CAS  PubMed  Google Scholar 

  6. Jadeja NB, More RP, Purohit HJ et al (2014) Metagenomic analysis of oxygenases from activated sludge. Bioresour Technol 165:250–256

    Article  CAS  PubMed  Google Scholar 

  7. Yadav TC, Pal RR, Shastri S et al (2015) Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater. Bioresour Technol 188:24–32

    Article  CAS  PubMed  Google Scholar 

  8. More RP, Mitra S, Raju SC et al (2014) Mining and assessment of catabolic pathways in the metagenome of a common effluent treatment plant to induce the degradative capacity of biomass. Bioresour Technol 153:137–146

    Article  CAS  PubMed  Google Scholar 

  9. Ju F, Guo F, Ye L et al (2014) Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale WWT plant over 4 years. Environ Microbiol Rep 6:80–89

    Article  CAS  PubMed  Google Scholar 

  10. Martín HG, Ivanova N, Kunin V et al (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities Nat. Biotech 24:1263

    Google Scholar 

  11. Albertsen M, Hansen LBS, Saunders AM et al (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6:1094

    Article  CAS  PubMed  Google Scholar 

  12. Yadav S, Kapley A (2021) Antibiotic resistance: global health crisis and metagenomics. Biotechnol Rep 29:e00604

    Article  CAS  Google Scholar 

  13. Davidov K, Iankelevich-Kounio E, Yakovenko I et al (2020) Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION. Sci Rep 10:1–11

    Article  Google Scholar 

  14. Yadav R, Rajput V, Dharne M (2021) Functional metagenomic landscape of polluted river reveals potential genes involved in degradation of xenobiotic pollutants. Environ Res 192:110332

    Article  CAS  PubMed  Google Scholar 

  15. Ju F, Guo F, Ye L et al (2014) Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. Environ Microbiol Rep 6:80–89

    Article  CAS  PubMed  Google Scholar 

  16. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7:e38183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang H, Cai L, Yu Y et al (2013) Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge. Bioresour Technol 129:209–218

    Article  CAS  PubMed  Google Scholar 

  18. Thomas T, Gilbert J, Meyer F (2012) Metagenomics – a guide from sampling to data analysis. Microb Inform Exp 2:1–12

    Article  Google Scholar 

  19. Kakirde KS, Parsley LC, Liles MR (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42:1911–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer F, Paarmann D, D’Souza M et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:1–8

    Article  Google Scholar 

  21. Meyer F, Bagchi S, Chaterji S et al (2019) MG-RAST version 4 – lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis. Brief Bioinform 20:1151–1159

    Article  PubMed  Google Scholar 

  22. https://help.mg-rast.org/user_manual.html. Accessed on July 2021

  23. de Menezes A, Clipson N, Doyle E (2012) Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14:2577–2588

    Article  PubMed  Google Scholar 

  24. Parks DH, Tyson GW, Hugenholtz P et al (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html

    Google Scholar 

  26. Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  PubMed  Google Scholar 

  27. Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  28. Arakawa K, Kono N, Yamada Y et al (2005) KEGG-based pathway visualization tool for complex omics data. In Silico Biol 5:419–423

    CAS  PubMed  Google Scholar 

  29. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinform 12:1–10

    Article  Google Scholar 

  30. Jadeja NB, Purohit HJ, Kapley A (2019) Decoding microbial community intelligence through metagenomics for efficient WWT. Funct Integr Genomics 19:839–851

    Article  CAS  PubMed  Google Scholar 

  31. Bhardwaj P, Singh KR, Jadeja NB et al (2020) Atrazine bioremediation and its influence on soil microbial diversity by metagenomics analysis. Indian J Microbiol 60:388–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The manuscript has been checked for plagiarism at an institute using iThenticate (Anti-Plagiarism Software) and granted the article reference number: CSIR-NEERI/KRC/2021/AUG/EBGD/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atya Kapley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jadeja, N.B., Kapley, A. (2023). Designing Knowledge-Based Bioremediation Strategies Using Metagenomics. In: Mitra, S. (eds) Metagenomic Data Analysis. Methods in Molecular Biology, vol 2649. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3072-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3072-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3071-6

  • Online ISBN: 978-1-0716-3072-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics