Skip to main content

Experimental Framework and Methods for the Assessment of Skin Wetness Sensing in Humans

  • Protocol
  • First Online:
Somatosensory Research Methods

Part of the book series: Neuromethods ((NM,volume 196))

Abstract

The study of the human ability to both detect the presence and estimate the amount of wetness on the skin has grown in scientific interest over the last century, due to the implication of wetness in comfort and skin health. In 1900, Bentley demonstrated that skin wetness is detected based on touch and temperature stimuli combining to produce sensations of liquidity, and that wetness perception increases with cold touch. It has since been demonstrated that, in the absence of a skin hygroreceptor (i.e., wetness receptor) in humans, the biophysical effects of moisture on the skin—conductive heat transfer and mechanical interaction—excite specific cutaneous mechanoreceptors and thermoreceptors. The resulting afferent signals are centrally integrated to generate our perception of skin wetness. As well as providing a theoretical foundation for understanding this aspect of somatosensation, these insights have helped develop a methodological framework for the study of human skin wetness sensing, which relies on assessing the independent and interactive effects of thermo-tactile stimulation of the skin in the presence of a liquid.

This chapter will provide an overview of the experimental framework and methods available to evaluate the biophysical and psychophysical responses to controlled dry and wet stimuli applied to skin, and the resulting wetness perception. We will use example scenarios of skin-moisture interactions (e.g., arising from contact with a wet surface or from sweat production), to critically evaluate the methods, noting their accuracy, reliability, and efficiency, and discuss their limitations and commonly encountered difficulties. It is hoped that these considerations will guide and further develop research of this relatively little-investigated, yet fundamental, aspect of somatosensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vargas NT, Chapman CL, Johnson BD et al (2019) Exercise intensity independently modulates thermal behavior during exercise recovery but not during exercise. J Appl Physiol 126:1150–1159. https://doi.org/10.1152/japplphysiol.00992.2018

    Article  PubMed  Google Scholar 

  2. Gray M, Black JM, Baharestani MM et al (2011) Moisture-associated skin damage overview and pathophysiology. J Wound Ostomy Cont Nurs 38:233–241. https://doi.org/10.1097/WON.0b013e318215f798

    Article  Google Scholar 

  3. Filingeri D, Ackerley R (2017) The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics. J Neurophysiol 117:1761–1775. https://doi.org/10.1152/jn.00883.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim SM, Wang JW (2016) Hygrosensation: feeling wet and cold. Curr Biol 26:R408–R410. https://doi.org/10.1016/j.cub.2016.04.040

    Article  CAS  PubMed  Google Scholar 

  5. Ackerley R, Kavounoudias A (2015) The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia 79:192–205. https://doi.org/10.1016/j.neuropsychologia.2015.06.024

    Article  PubMed  Google Scholar 

  6. Ackerley R, Watkins RH (2018) Microneurography as a tool to study the function of individual C-fiber afferents in humans: responses from nociceptors, thermoreceptors, and mechanoreceptors. J Neurophysiol 120:2834–2846

    Article  PubMed  Google Scholar 

  7. Filingeri D, Havenith G (2017) Peripheral and central determinants of skin wetness sensing in humans. Temperature 2:86–104. https://doi.org/10.1080/23328940.2015.1008878

    Article  Google Scholar 

  8. Bentley I (1900) The synthetic experiment. Am J Phys 11:405–425. https://doi.org/10.1525/tph.2001.23.2.29

    Article  Google Scholar 

  9. Sullivan A (1923) The perceptions of liquidity, semi-liquidity and solidity. Am J Psychol 34:531–541

    Article  Google Scholar 

  10. Zigler MJ (1923) An experimental study of the perception of stickiness. Am J Psychol 34:73–84. https://doi.org/10.4992/jjpsy.11.279

    Article  Google Scholar 

  11. Zigler MJ (1923) An experimental study of the perception of clamminess. Am J Psychol 34:550–561

    Article  Google Scholar 

  12. Cobbey LW, Sullivan AH (1922) An experimental study of the perception of oiliness. Am J Psychol 33:121. https://doi.org/10.2307/1413756

    Article  Google Scholar 

  13. Demartine ML, Cussler EL (1975) Predicting subjective spreadability, viscosity, and stickiness. J Pharm Sci 64:976–982. https://doi.org/10.1002/jps.2600640618

    Article  CAS  PubMed  Google Scholar 

  14. Gagge AP, Stolwijk JAJ, Hardy JD (1967) Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res 1:1–20. https://doi.org/10.1016/0013-9351(67)90002-3

    Article  CAS  PubMed  Google Scholar 

  15. Sweeney MM, Branson DH (1990) Sensorial comfort: part I: a psychophysical method for assessing moisture sensation in clothing. Text Res J 60:371–377. https://doi.org/10.1177/004051759006000701

    Article  Google Scholar 

  16. Sweeney MM, Branson DH (1990) Sensorial comfort part II: a magnitude estimation approach for assessing moisture sensation. Text Res J. https://doi.org/10.1177/004051759006000803

  17. Merrick C, Rosati R, Filingeri D (2021) Skin wetness detection thresholds and wetness magnitude estimations of the human index fingerpad and their modulation by moisture temperature. J Neurophysiol 125:1987–1999. https://doi.org/10.1152/jn.00538.2020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Filingeri D, Fournet D, Hodder S, Havenith G (2014) Why wet feels wet? A neurophysiological model of human cutaneous wetness sensitivity. J Neurophysiol 112:1457–1469. https://doi.org/10.1152/jn.00120.2014

    Article  PubMed  Google Scholar 

  19. Farage MA, Meyer S, Walter D (2004) Evaluation of modifications of the traditional patch test in assessing the chemical irritation potential of feminine hygiene products. Skin Res Technol 10:73–84. https://doi.org/10.1111/j.1600-0846.2004.00054.x

    Article  PubMed  Google Scholar 

  20. Humbert P, Ferial F, Agache P, Maibach HI (2017) Agache’s measuring the skin, 2nd edn. Springer International Publishing AG, Cham

    Book  Google Scholar 

  21. Filingeri D, Fournet D, Hodder S, Havenith G (2014) Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures. J Appl Physiol 117:887–897. https://doi.org/10.1152/japplphysiol.00535.2014

    Article  PubMed  Google Scholar 

  22. Vargas NT, Chapman CL, Johnson BD et al (2019) Thermal behavior alleviates thermal discomfort during steady-state exercise without affecting whole body heat loss. J Appl Physiol 127:984–994. https://doi.org/10.1152/japplphysiol.00379.2019

    Article  CAS  PubMed  Google Scholar 

  23. Ehrenstein W, Ehrenstein A (1999) Psychophysical methods. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin, pp 128–157

    Google Scholar 

  24. Hatzfeld C, Kühner M, Söllner S et al (2017) Human perception measures for product design and development—a tutorial to measurement methods and analysis. Multimodal Technol Interact 1:1–23. https://doi.org/10.3390/mti1040028

    Article  Google Scholar 

  25. Treutwein B (1995) Adaptive psychophysical procedures. Vis Res 35:2503–2522. https://doi.org/10.1016/0042-6989(95)00016-X

    Article  CAS  PubMed  Google Scholar 

  26. Breedlove SM, Rosenzweig MR, Watson NV (2007) Biological psychology : an introduction to behavioral, cognitive, and clinical neuroscience, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  27. Peters A (2007) The effects of normal aging on nerve fibers and neuroglia in the central nervous system. In: Riddle D (ed) Brain aging: models, methods, and mechanisms. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  28. Stevens JC, Choo KK (1996) Spatial acuity of the body surface over the life span. Somatosens Mot Res 13:153–166

    Article  CAS  PubMed  Google Scholar 

  29. Stevens J, Choo K (1998) Temperature sensitivity of the body surface over the life span. Somatosens Mot Res 15:13–28

    Article  CAS  PubMed  Google Scholar 

  30. Ortiz A, Grando SA (2012) Smoking and the skin. Int J Dermatol 51:250–262

    Article  CAS  PubMed  Google Scholar 

  31. Yadav RL, Sharma D, Yadav PK et al (2016) Somatic neural alterations in non-diabetic obesity: a cross-sectional study. BMC Obes 3:50. https://doi.org/10.1186/s40608-016-0131-3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schrieks I (2016) Influence of moderate alcohol consumption on emotional and physical well-being. Wageningen University

    Google Scholar 

  33. Valenza A, Bianco A, Filingeri D (2019) Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running. J Physiol 597:3315–3332. https://doi.org/10.1113/JP277928

    Article  CAS  PubMed  Google Scholar 

  34. Filingeri D, Fournet D, Hodder S, Havenith G (2015) Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness. J Neurophysiol 113:3462. https://doi.org/10.1152/jn.00141.2015

    Article  PubMed  PubMed Central  Google Scholar 

  35. Green DM (1964) General prediction relating yes/no and forced/choice results. J Acoust Soc Am 36:1042–1042. https://doi.org/10.1121/1.2143339

    Article  Google Scholar 

  36. Schulman AJ, Mitchell RR (1966) Operating characteristics from yes/no and forced/choice procedures. J Acoust Soc Am 40:473–477. https://doi.org/10.1121/1.1910098

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Merrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Merrick, C., Ackerley, R., Filingeri, D. (2023). Experimental Framework and Methods for the Assessment of Skin Wetness Sensing in Humans. In: Holmes, N.P. (eds) Somatosensory Research Methods. Neuromethods, vol 196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3068-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3068-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3067-9

  • Online ISBN: 978-1-0716-3068-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics