Skip to main content

Application of SolCAP Genotyping in Potato (Solanum tuberosum L.) Association Mapping

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

  • 1068 Accesses

Abstract

Potato variety development entails a number of breeding steps, as well as testing and, finally, commercialization. Historically, phenotypic assesment were carried out to select and germplasm development. The US Department of Agriculture (USDA) funded the Solanaceae Coordinated Agricultural Project (SolCAP) to decode genomic resources into tools that breeders and geneticists can use. This project resulted in the creation of a genome-wide single-nucleotide polymorphism (SNP) array that can be used to evaluate elite potato-breeding germplasm. This array was used to genotype a diverse panel of Solanum species, as well as numerous biparental, diploid, and tetraploid populations. It has high marker density to generate genetic maps that can be used to identify numerous quantitative trait loci (QTLs) for agronomic, quality, biotic, and abiotic resistance traits. Up to now, numerous QTLs for important traits have been identified using new diploid and tetraploid genetic maps. SNP markers were used to assess germplasm relationships and fingerprint varieties and identify candidate genes. The Infinium 8303 SolCAP Potato array offers a common set of SNP markers that can be used for mapping, germplasm assessment, and fingerprinting with confidence. This array has also been helpful in furthering our understanding of the potato genome. Furthermore, some other Infinium potato arrays (i.e., 12 K, 20 K, and 25 K) have been genotyped, and breeders can map quantitative trait loci (QTLs) across multiple populations to improve our understanding of economically important traits and lead to marker-assisted selection (MAS) and breeding and, ultimately, improved varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAOSTAT. https://www.fao.org/faostat/en/#home. Accessed 17 June 2022

  2. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883. https://doi.org/10.1371/journal.pbio.1001883

    Article  Google Scholar 

  3. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982. https://doi.org/10.1371/journal.pgen.1004982

    Article  CAS  Google Scholar 

  4. Oraguzie NC, Wilcox PL, Rikkerink EH, De Silva HN (2007) Linkage disequilibrium. In: Oraguzie NC et al (eds) Association mapping in plants. Springer, New York, pp 11–39. https://doi.org/10.1007/978-0-387-36011-9_2

    Chapter  Google Scholar 

  5. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485. https://doi.org/10.1007/s11103-005-0257-z

    Article  CAS  Google Scholar 

  6. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202. https://doi.org/10.1105/tpc.109.068437

    Article  CAS  Google Scholar 

  7. Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, Deynze AV et al (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 12:302. https://doi.org/10.1186/1471-2164-12-302

    Article  CAS  Google Scholar 

  8. Felcher KJ, Coombs JJ, Massa AN, Hansey CN, Hamilton JP, Veilleux RE et al (2012) Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One 7:e36347. https://doi.org/10.1371/journal.pone.0036347

    Article  CAS  Google Scholar 

  9. Hackett CA, McLean K, Bryan GJ (2013) Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS One 8:e63939. https://doi.org/10.1371/journal.pone.0063939

    Article  Google Scholar 

  10. Stich B, Urbany C, Hoffmann P, Gebhardt C (2013) Population structure and linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide high-density genotyping using the SolCAP SNP array. Plant Breed 132:718–724. https://doi.org/10.1111/pbr.12102

    Article  CAS  Google Scholar 

  11. Douches D, Hirsch CN, Manrique-Carpintero NC, Massa AN, Coombs J, Hardigan M et al (2014) The contribution of the Solanaceae coordinated agricultural project to potato breeding. Potato Res 57:215–224. https://doi.org/10.1007/s11540-014-9267-z

    Article  Google Scholar 

  12. Peterson BA, Holt SH, Laimbeer FPE, Doulis AG, Coombs J, Douches DS et al (2016) Self-fertility in a cultivated diploid potato population examined with the Infinium 8303 potato single-nucleotide polymorphism array. Plant Genome 9:3. https://doi.org/10.3835/plantgenome2016.01.0003

    Article  Google Scholar 

  13. Santa JD, Berdugo-Cely J, Cely-Pardo L, Soto-Suárez M, Mosquera T, Galeano MCH (2018) QTL analysis reveals quantitative resistant loci for Phytophthora infestans and Tecia solanivora in tetraploid potato (Solanum tuberosum L.). PLoS One 13:e0199716. https://doi.org/10.1371/journal.pone.0199716

    Article  CAS  Google Scholar 

  14. Omayio DG, Abong GO, Okoth MW (2016) A review of occurrence of glycoalkaloids in potato and potato products. Curr Res Nutr Food Sci 4:3. https://doi.org/10.12944/CRNFSJ.4.3.05

    Article  Google Scholar 

  15. Esnault F, Pellé R, Dantec JP, Bérard A, Le Paslier MC, Chauvin JE (2016) Development of a potato cultivar (Solanum tuberosum L.) core collection, a valuable tool to prospect genetic variation for novel traits. Potato Res 59:329–343. https://doi.org/10.1007/s11540-016-9332-x

    Article  CAS  Google Scholar 

  16. Potatoes Annual Summary. USDA Economics, Statistics and Market Information System. ID:fx719m44h. https://usda.library.cornell.edu/concern/publications/fx719m44h. Accessed 17 June 2022

  17. Park J, Massa AN, Douches D, Coombs J, Akdemir D, Yencho GC et al (2021) Linkage and QTL mapping for tuber shape and specific gravity in a tetraploid mapping population of potato representing the russet market class. BMC Plant Biol 21:507. https://doi.org/10.1186/s12870-021-03265-2

    Article  CAS  Google Scholar 

  18. Bali S, Robinson BR, Sathuvalli V, Bamberg J, Goyer A (2018) Single nucleotide polymorphism (SNP) markers associated with high folate content in wild potato species. PLoS One 13:e0193415. https://doi.org/10.1371/journal.pone.0193415

    Article  CAS  Google Scholar 

  19. Zorrilla C, Navarro F, Vega-Semorile S, Palta J (2021) QTL for pitted scab, hollow heart, and tuber calcium identified in a tetraploid population of potato derived from an Atlantic × Superior cross. Crop Sci 61:1630–1651. https://doi.org/10.1002/csc2.20388

    Article  CAS  Google Scholar 

  20. Yousaf MF, Demirel U, Naeem M, Çalışkan ME (2021) Association mapping reveals novel genomic regions controlling some root and stolon traits in tetraploid potato (Solanum tuberosum L.). 3 Biotech 11:174. https://doi.org/10.1007/s13205-021-02727-6

    Article  Google Scholar 

  21. Hirsch CN, Hirsch CD, Felcher K, Coombs J, Zarka D, van Deynze A et al (2013) Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3 Genes Genomes Genet 3:1003–1013. https://doi.org/10.1534/g3.113.005595

    Article  Google Scholar 

  22. Vos PG, Uitdewilligen JGAML, Voorrips RE, Visser RGF, van Eck HJ (2015) Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet 128:2387–2401. https://doi.org/10.1007/s00122-015-2593-y

    Article  CAS  Google Scholar 

  23. Ellis D, Chavez O, Coombs J, Soto J, Gomez R, Douches D et al (2018) Genetic identity in genebanks: application of the SolCAP 12K SNP array in fingerprinting and diversity analysis in the global in trust potato collection. Genome 61:523–537. https://doi.org/10.1139/gen-2017-0201

    Article  CAS  Google Scholar 

  24. Bali S, Sathuvalli V, Brown C, Novy R, Ewing L, Debons J et al (2017) Genetic fingerprinting of potato varieties from the northwest potato variety development program. Am J Potato Res 94:54–63. https://doi.org/10.1007/s12230-016-9547-z

    Article  CAS  Google Scholar 

  25. Berdugo-Cely JA, Martínez-Moncayo C, Lagos-Burbano TC (2021) Genetic analysis of a potato (Solanum tuberosum L.) breeding collection for southern Colombia using single nucleotide polymorphism (SNP) markers. PLoS One 16:e0248787. https://doi.org/10.1371/journal.pone.0248787

    Article  CAS  Google Scholar 

  26. Pandey J, Scheuring DC, Koym JW, Coombs J, Novy RG, Thompson AL et al (2021) Genetic diversity and population structure of advanced clones selected over forty years by a potato breeding program in the USA. Sci Rep 11:8344. https://doi.org/10.1038/s41598-021-87284-x

    Article  CAS  Google Scholar 

  27. Igarashi T, Tsuyama M, Ogawa K, Koizumi E, Sanetomo R, Hosaka K (2018) Evaluation of Japanese potatoes using single nucleotide polymorphisms (SNPs). Mol Breed 39:9. https://doi.org/10.1007/s11032-018-0917-8

    Article  CAS  Google Scholar 

  28. Björn B, Paulo MJ, Mank RA, van Eck HJ, van Eeuwijk FA (2008) Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica 161:47–60. https://doi.org/10.1007/s10681-007-9565-5

    Article  Google Scholar 

  29. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London, 259 pp

    Google Scholar 

  30. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  Google Scholar 

  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  Google Scholar 

  32. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587. https://doi.org/10.1093/genetics/164.4.1567

    Article  CAS  Google Scholar 

  33. Uitdewilligen JGAML, Wolters AMA, D’hoop BB, Borm TJA, RGF V, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8:e62355. https://doi.org/10.1371/journal.pone.0062355

    Article  CAS  Google Scholar 

  34. Manrique-Carpintero NC, Tokuhisa JG, Ginzberg I, Holliday JA, Veilleux RE (2013) Sequence diversity in coding regions of candidate genes in the glycoalkaloid biosynthetic pathway of wild potato species. G3 Genes Genomes Genet 3:1467–1479. https://doi.org/10.1534/g3.113.007146

    Article  CAS  Google Scholar 

  35. Manrique-Carpintero NC, Tokuhisa JG, Ginzberg I, Veilleux RE (2014) Allelic variation in genes contributing to glycoalkaloid biosynthesis in a diploid interspecific population of potato. Theor Appl Genet 127:391–405. https://doi.org/10.1007/s00122-013-2226-2

    Article  CAS  Google Scholar 

  36. Hardigan MA, Bamberg J, Buell CR, Douches DS (2015) Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota Plant Genome 8:25. https://doi.org/10.3835/plantgenome2014.06.0025

    Article  CAS  Google Scholar 

  37. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics 2012:e728398. https://doi.org/10.1155/2012/728398

    Article  CAS  Google Scholar 

  38. Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E et al (2014) The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 Genes Genomes Genet 4:89–96. https://doi.org/10.1534/g3.113.007617

    Article  CAS  Google Scholar 

  39. Logan-Young CJ, Yu JZ, Verma SK, Percy RG, Pepper AE (2015) SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing. Appl. Plant Sci 3:1400077. https://doi.org/10.3732/apps.1400077

    Article  Google Scholar 

  40. Clevenger JP, Ozias-Akins P (2015) SWEEP: a tool for filtering high-quality SNPs in polyploid crops. G3 Genes Genomes Genet 5:1797–1803. https://doi.org/10.1534/g3.115.019703

    Article  Google Scholar 

  41. Lachance J, Tishkoff SA (2013) SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays 35:780–786. https://doi.org/10.1002/bies.201300014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yousaf, M.F., Zia, M.A.B., Naeem, M. (2023). Application of SolCAP Genotyping in Potato (Solanum tuberosum L.) Association Mapping. In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics