Skip to main content

Progress in Targeted Mass Spectrometry (Parallel Accumulation-Serial Fragmentation) and Its Application in Plasma/Serum Proteomics

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2628))

Abstract

Targeted mass spectrometry using multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) has been commonly used for protein biomarker validation in plasma, serum, or other clinically relevant specimens due to its high specificity, selectivity, and multiplexing capability compared with immunoassays. As the emerging mode termed parallel accumulation-serial fragmentation (prmPASEF) significantly improved analyte throughput (100–1000), sensitivity (attomole level), and acquisition speed, it promises to broaden the application of targeted mass spectrometry to simultaneous biomarker discovery and validation with high accuracy. Here, we summarize the general approach of the MRM and PRM techniques used for serum/plasma proteomics and describe a detailed step-by-step procedure for the development of MRM/PRM assays for secreted proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geyer PE, Holdt LM, Teupser D, Mann M (2017) Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol 13(9):942. https://doi.org/10.15252/msb.20156297

    Article  CAS  Google Scholar 

  2. Wu D, Zhang S, Xie Z, Chen E, Rao Q, Liu X, Huang K, Yang J, Xiao L, Ji F, Jiang Z, Zhao Y, Ouyang X, Zhu D, Dai X, Hou Z, Liu B, Deng B, Zhou N, Gao H, Sun Z, Li L (2020) Plasminogen as a prognostic biomarker for HBV-related acute-on-chronic liver failure. J Clin Invest 130(4):2069–2080. https://doi.org/10.1172/JCI130197

    Article  CAS  Google Scholar 

  3. Xiong Y, Zheng Y, Yan Y, Yao J, Liu H, Shen F, Kong S, Yang S, Yan G, Zhao H, Zhou X, Hu J, Zhou B, Jin T, Shen H, Leng B, Yang P, Liu X (2022) Circulating proteomic panels for risk stratification of intracranial aneurysm and its rupture. EMBO Mol Med 14(2):e14713. https://doi.org/10.15252/emmm.202114713

    Article  CAS  Google Scholar 

  4. Sun Z, Liu X, Wu D, Gao H, Jiang J, Yang Y, Wu J, Gao Q, Wang J, Jiang Z, Xu Y, Xu X, Li L (2019) Circulating proteomic panels for diagnosis and risk stratification of acute-on-chronic liver failure in patients with viral hepatitis B. Theranostics 9(4):1200–1214. https://doi.org/10.7150/thno.31991

    Article  CAS  Google Scholar 

  5. Huettenhain R, Choi M, de la Fuente LM, Oehl K, Chang C-Y, Zimmermann A-K, Malander S, Olsson H, Surinova S, Clough T, Heinzelmann-Schwarz V, Wild PJ, Dinulescu DM, Nimeus E, Vitek O, Aebersold R (2019) A targeted mass spectrometry strategy for developing proteomic biomarkers: a case study of epithelial ovarian cancer. Mol Cell Proteomics 18(9):1836–1850. https://doi.org/10.1074/mcp.RA118.001221

    Article  Google Scholar 

  6. Niu L, Geyer PE, Wewer Albrechtsen NJ, Gluud LL, Santos A, Doll S, Treit PV, Holst JJ, Knop FK, Vilsbøll T, Junker A, Sachs S, Stemmer K, Müller TD, Tschöp MH, Hofmann SM, Mann M (2019) Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol Syst Biol 15(3). https://doi.org/10.15252/msb.20188793

  7. Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29(7):625–634. https://doi.org/10.1038/nbt.1900

    Article  CAS  Google Scholar 

  8. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–641. https://doi.org/10.1038/nbt.1546

    Article  CAS  Google Scholar 

  9. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488. https://doi.org/10.1074/mcp.O112.020131

    Article  CAS  Google Scholar 

  10. McIntosh M, Fitzgibbon M (2009) Biomarker validation by targeted mass spectrometry. Nat Biotechnol 27(7):622–623. https://doi.org/10.1038/nbt0709-622

    Article  CAS  Google Scholar 

  11. Kim Y, Yeo I, Huh I, Kim J, Han D, Jang JY, Kim Y (2021) Development and multiple validation of the protein multi-marker panel for diagnosis of pancreatic cancer. Clin Cancer Res 27(8):2236–2245. https://doi.org/10.1158/1078-0432.CCR-20-3929

    Article  CAS  Google Scholar 

  12. Xie J, Zhang L, Chen Z, Hu A, Liu S, Lu D, Xia Y, Qian J, Yang P, Shen H (2020) Protein-protein correlations based variable dimension expansion algorithm for high efficient serum biomarker discovery. Anal Chim Acta 1119:25–34. https://doi.org/10.1016/j.aca.2020.04.013

    Article  CAS  Google Scholar 

  13. Herrington DM, Mao C, Parker SJ, Fu Z, Yu G, Chen L, Venkatraman V, Fu Y, Wang Y, Howard TD, Jun G, Zhao CF, Liu Y, Saylor G, Spivia WR, Athas GB, Troxclair D, Hixson JE, Vander Heide RS, Wang Y, Van Eyk JE (2018) Proteomic architecture of human coronary and aortic atherosclerosis. Circulation 137(25):2741–2756. https://doi.org/10.1161/CIRCULATIONAHA.118.034365

    Article  CAS  Google Scholar 

  14. Meng H, Ruan J, Chen Y, Yan Z, Shi K, Li X, Yang P, Meng F (2021) Investigation of specific proteins related to different types of coronary atherosclerosis. Front Cardiovasc Med 8:758035. https://doi.org/10.3389/fcvm.2021.758035

    Article  CAS  Google Scholar 

  15. Lesur A, Schmit PO, Bernardin F, Letellier E, Brehmer S, Decker J, Dittmar G (2020) Highly multiplexed targeted proteomics acquisition on a TIMS-QTOF. Anal Chem 93:1383. https://doi.org/10.1021/acs.analchem.0c03180

    Article  CAS  Google Scholar 

  16. Brzhozovskiy A, Kononikhin A, Bugrova AE, Kovalev GI, Schmit PO, Kruppa G, Nikolaev EN, Borchers CH (2022) The parallel reaction monitoring-parallel accumulation-serial fragmentation (prm-PASEF) approach for multiplexed absolute quantitation of proteins in human plasma. Anal Chem 94(4):2016–2022. https://doi.org/10.1021/acs.analchem.1c03782

    Article  CAS  Google Scholar 

  17. Zhu H, Ficarro SB, Alexander WM, Fleming LE, Adelmant G, Zhang T, Willetts M, Decker J, Brehmer S, Krause M, East MP, Gray NS, Johnson GL, Kruppa G, Marto JA (2021) PRM-LIVE with trapped ion mobility spectrometry and its application in selectivity profiling of kinase inhibitors. Anal Chem 93(41):13791–13799. https://doi.org/10.1021/acs.analchem.1c02349

    Article  CAS  Google Scholar 

  18. Makridakis M, Vlahou A (2010) Secretome proteomics for discovery of cancer biomarkers. J Proteome 73(12):2291–2305. https://doi.org/10.1016/j.jprot.2010.07.001

    Article  CAS  Google Scholar 

  19. Robinson JL, Feizi A, Uhlen M, Nielsen J (2019) A systematic investigation of the malignant functions and diagnostic potential of the cancer secretome. Cell Rep 26(10):2622–2635. e2625. https://doi.org/10.1016/j.celrep.2019.02.025

    Article  CAS  Google Scholar 

  20. Zhang H, Chan DW (2007) Cancer biomarker discovery in plasma using a tissue-targeted proteomic approach. Cancer Epidemiol Biomark Prev 16(10):1915–1917. https://doi.org/10.1158/1055-9965.EPI-07-0420

    Article  CAS  Google Scholar 

  21. Sajic T, Liu Y, Arvaniti E, Surinova S, Williams EG, Schiess R, Huttenhain R, Sethi A, Pan S, Brentnall TA, Chen R, Blattmann P, Friedrich B, Nimeus E, Malander S, Omlin A, Gillessen S, Claassen M, Aebersold R (2018) Similarities and differences of blood N-glycoproteins in five solid carcinomas at localized clinical stage analyzed by SWATH-MS. Cell Rep 23(9):2819–2831. e2815. https://doi.org/10.1016/j.celrep.2018.04.114

    Article  CAS  Google Scholar 

  22. Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H (2022) SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40:1023. https://doi.org/10.1038/s41587-021-01156-3

    Article  CAS  Google Scholar 

  23. Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, Campisi J, Schilling B (2020) A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 18(1):e3000599. https://doi.org/10.1371/journal.pbio.3000599

    Article  CAS  Google Scholar 

  24. Polanski M, Anderson NL (2007) A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights 1:1–48

    Google Scholar 

  25. Ossola R, Schiess R, Picotti P, Rinner O, Reiter L, Aebersold R (2011) Biomarker validation in blood specimens by selected reaction monitoring mass spectrometry of N-glycosites. Methods Mol Biol 728:179–194. https://doi.org/10.1007/978-1-61779-068-3_11

    Article  CAS  Google Scholar 

  26. Kim KH, Park GW, Jeong JE, Ji ES, An HJ, Kim JY, Yoo JS (2019) Parallel reaction monitoring with multiplex immunoprecipitation of N-glycoproteins in human serum for detection of hepatocellular carcinoma. Anal Bioanal Chem 411(14):3009–3019. https://doi.org/10.1007/s00216-019-01775-5

    Article  CAS  Google Scholar 

  27. Kim KH, Lee SY, Kim DG, Lee S-Y, Kim JY, Yoo JS (2020) Absolute quantification of N-glycosylation of alpha-fetoprotein using parallel reaction monitoring with stable isotope-labeled N-glycopeptide as an internal standard. Anal Chem 92(18):12588–12595. https://doi.org/10.1021/acs.analchem.0c02563

    Article  CAS  Google Scholar 

  28. Liu X, Jin Z, O’Brien R, Bathon J, Dietz HC, Grote E, Van Eyk JE (2013) Constrained selected reaction monitoring: quantification of selected post-translational modifications and protein isoforms. Methods 61(3):304–312. https://doi.org/10.1016/j.ymeth.2013.03.006

    Article  CAS  Google Scholar 

  29. Adachi J, Narumi R, Tomonaga T (2016) Targeted phosphoproteome analysis using selected/multiple reaction monitoring (SRM/MRM). In: Reinders J (ed) Proteomics in systems biology: methods and protocols, Methods in molecular biology, vol 1394, pp 87–100. https://doi.org/10.1007/978-1-4939-3341-9_7

    Chapter  Google Scholar 

  30. Taumer C, Griesbaum L, Kovacevic A, Soufi B, Nalpas NC, Macek B (2018) Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements. J Proteome 189:60–66. https://doi.org/10.1016/j.jprot.2018.03.028

    Article  CAS  Google Scholar 

  31. Rardin MJ, Held JM, Gibson BW (2013) Targeted quantitation of acetylated lysine peptides by selected reaction monitoring mass spectrometry. In: Hirschey MD (ed) Sirtuins: methods and protocols, Methods in molecular biology, vol 1077, pp 121–131. https://doi.org/10.1007/978-1-62703-637-5_8

    Chapter  Google Scholar 

  32. Xu L, Wang F, Xu Y, Wang Y, Zhang C, Qin X, Yu H, Yang P (2015) An MRM-based workflow for absolute quantitation of lysine-acetylated metabolic enzymes in mouse liver. Analyst 140(23):7868–7875. https://doi.org/10.1039/c5an01832c

    Article  CAS  Google Scholar 

  33. Tang H, Fang H, Yin E, Brasier AR, Sowers LC, Zhang K (2014) Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal Chem 86(11):5526–5534. https://doi.org/10.1021/ac500972x

    Article  CAS  Google Scholar 

  34. Kwon OK, Ha Y-S, Lee JN, Kim S, Lee H, Chun SY, Kwon TG, Lee S (2019) Comparative proteome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteogenomics. Cancer Genomic Proteomics 16(4):273–286. https://doi.org/10.21873/cgp.20132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huali Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hu, A., Zhang, J., Shen, H. (2023). Progress in Targeted Mass Spectrometry (Parallel Accumulation-Serial Fragmentation) and Its Application in Plasma/Serum Proteomics. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics