Skip to main content

Modeling of Olfactory Receptors

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

  • 684 Accesses

Abstract

Olfactory receptors (ORs) form the largest subfamily within class A G protein-coupled receptors (GPCRs). No experimental structural data of any OR is available to date. Homology modeling has become a popular strategy to propose plausible OR models, in order to study the structure-function relationships of the receptors and to aid the discovery and development of ligands capable of modulating receptor activity. In this chapter, we provide a general guideline for OR structure construction, including the collection of candidate templates, structure-based sequence alignment, 3D structure construction, ligand docking, and molecular dynamic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garland SL (2013) Are GPCRs still a source of new targets? J Biomol Screen 18:947–966. https://doi.org/10.1177/1087057113498418

    Article  CAS  PubMed  Google Scholar 

  2. Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590. https://doi.org/10.1038/nrd3478

    Article  CAS  PubMed  Google Scholar 

  3. Kolakowski LF Jr (1994) GCRDb: a G-protein-coupled receptor database. Recept Channels 2:1–7

    CAS  PubMed  Google Scholar 

  4. Schiöth HB, Fredriksson R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol 142:94–101. https://doi.org/10.1016/j.ygcen.2004.12.018

    Article  CAS  PubMed  Google Scholar 

  5. Fredriksson R, Lagerström MC, Lundin LG et al (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  6. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187. https://doi.org/10.1016/0092-8674(91)90418-X

    Article  CAS  PubMed  Google Scholar 

  7. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278. https://doi.org/10.1038/nrn1365

    Article  CAS  PubMed  Google Scholar 

  8. Flegel C, Manteniotis S, Osthold S et al (2013) Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS One 8:e55368. https://doi.org/10.1371/journal.pone.0055368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kang N, Koo J (2012) Olfactory receptors in non-chemosensory tissues. BMB Rep 45:612–622. https://doi.org/10.5483/bmbrep.2012.45.11.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745. https://doi.org/10.1126/science.289.5480.739

    Article  CAS  PubMed  Google Scholar 

  11. Jaakola VP, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217. https://doi.org/10.1126/science.1164772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454:486–491. https://doi.org/10.1038/nature07101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387. https://doi.org/10.1038/nature06325

    Article  CAS  PubMed  Google Scholar 

  14. Wu B, Chien EYT, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071. https://doi.org/10.1126/science.1194396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chien EY, Liu W, Zhao Q et al (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095. https://doi.org/10.1126/science.1197410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimamura T, Shiroishi M, Weyand S et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70. https://doi.org/10.1038/nature10236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan S, Dahoun T, Brugarolas M et al (2019) Computational modeling of the olfactory receptor Olfr73 suggests a molecular basis for low potency of olfactory receptor-activating compounds. Commun Biol 2:141. https://doi.org/10.1038/s42003-019-0384-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Katada S, Hirokawa T, Oka Y et al (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815. https://doi.org/10.1523/jneurosci.4723-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ring AM, Manglik A, Kruse AC et al (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–579. https://doi.org/10.1038/nature12572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singhal A, Ostermaier MK, Vishnivetskiy SA et al (2013) Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO Rep 14:520–526. https://doi.org/10.1038/embor.2013.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de March CA, Kim S-K, Antonczak S et al (2015) G protein-coupled odorant receptors: from sequence to structure. Protein Sci 24:1543–1548. https://doi.org/10.1002/pro.2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Launay G, Téletchéa S, Wade F et al (2012) Automatic modeling of mammalian olfactory receptors and docking of odorants. Protein Eng Des Sel 25:377–386. https://doi.org/10.1093/protein/gzs037

    Article  CAS  PubMed  Google Scholar 

  23. Charlier L, Topin J, de March CA et al (2013) Molecular modelling of odorant/olfactory receptor complexes. Methods Mol Biol 1003:53–65. https://doi.org/10.1007/978-1-62703-377-0_4

    Article  CAS  PubMed  Google Scholar 

  24. Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2:Research0018. https://doi.org/10.1186/gb-2001-2-6-research0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6:551–552. https://doi.org/10.1038/nmeth0809-551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3

    Article  PubMed  Google Scholar 

  27. Klauda JB, Venable RM, Freites JA et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843. https://doi.org/10.1021/jp101759q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428. https://doi.org/10.1016/S1043-9471(05)80049-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, X., Stephen Chan, H.C., Yuan, S. (2023). Modeling of Olfactory Receptors. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics