Skip to main content

Isolating Mitochondria, Mitoplasts, and mtDNA from Cultured Mammalian Cells

  • Protocol
  • First Online:
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2615))

Abstract

Mitochondria are double membrane-bound eukaryotic organelles with roles in a range of cellular activities including energy conversion, apoptosis, cell signalling, and the biosynthesis of enzyme cofactors. Mitochondria contain their own genome, called mtDNA, which encodes subunits of the oxidative phosphorylation machinery as well as the rRNA and tRNA molecules required for their translation within mitochondria. The ability to isolate highly purified mitochondria from cells has been instrumental in a number of studies of mitochondrial function. Differential centrifugation is a long-established method for the isolation of mitochondria. Cells are subjected to osmotic swelling and disruption, followed by centrifugation in isotonic sucrose solutions to separate mitochondria from other cellular components. We present a method using this principle for the isolation of mitochondria from cultured mammalian cell lines. Mitochondria purified by this method can be further fractionated to investigate protein localization, or act as a starting point to purify mtDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, Goodman RP, Grabarek Z, Haas ME, Hung WHW et al (2021) MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res 49:D1541–D1547

    Article  CAS  PubMed  Google Scholar 

  2. Smith AC, Robinson AJ (2016) MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res 44:D1258–D1261

    Article  CAS  PubMed  Google Scholar 

  3. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714

    Article  CAS  PubMed  Google Scholar 

  5. Nass MM, Nass S (1963) Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19:593–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  7. Gammage PA, Moraes CT, Minczuk M (2018) Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet 34:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hogeboom GH, Schneider WC, Pallade GE (1948) Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem 172:619–635

    Article  CAS  PubMed  Google Scholar 

  9. Schnaitman C, Erwin VG, Greenawalt JW (1967) The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol 32:719–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higuchi Y, Linn S (1995) Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J Biol Chem 270:7950–7956

    Article  CAS  PubMed  Google Scholar 

  11. Yang MY, Bowmaker M, Reyes A, Vergani L, Angeli P, Gringeri E, Jacobs HT, Holt IJ (2002) Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111:495–505

    Article  CAS  PubMed  Google Scholar 

  12. Kornblum C, Nicholls TJ, Haack TB, Scholer S, Peeva V, Danhauser K, Hallmann K, Zsurka G, Rorbach J, Iuso A et al (2013) Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat Genet 45:214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pallotti F, Lenaz G (2007) Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol 80:3–44

    Article  CAS  PubMed  Google Scholar 

  14. Hornig-Do HT, Gunther G, Bust M, Lehnartz P, Bosio A, Wiesner RJ (2009) Isolation of functional pure mitochondria by superparamagnetic microbeads. Anal Biochem 389:1–5

    Article  CAS  PubMed  Google Scholar 

  15. Parsons DF, Williams GR, Chance B (1966) Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci 137:643–666

    Article  CAS  PubMed  Google Scholar 

  16. Murthy MS, Pande SV (1987) Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A 84:378–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reyes A, Yasukawa T, Cluett TJ, Holt IJ (2009) Analysis of mitochondrial DNA by two-dimensional agarose gel electrophoresis. Methods Mol Biol 554:15–35

    Article  CAS  PubMed  Google Scholar 

  18. Grady JP, Murphy JL, Blakely EL, Haller RG, Taylor RW, Turnbull DM, Tuppen HA (2014) Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle. PLoS One 9:e114462

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

T.J.N. is supported by a Sir Henry Dale Fellowship jointly funded by Wellcome and the Royal Society (213464/Z/18/Z) and a Rosetrees and Stoneygate Trust Research Fellowship (M811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Nicholls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Menger, K.E., Nicholls, T.J. (2023). Isolating Mitochondria, Mitoplasts, and mtDNA from Cultured Mammalian Cells. In: Nicholls, T.J., Uhler, J.P., Falkenberg, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 2615. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2922-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2922-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2921-5

  • Online ISBN: 978-1-0716-2922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics