Skip to main content

Using Drosophila Genetics to Identify Factors that Affect PARP1 Activity In Vivo

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2609))

  • 813 Accesses

Abstract

PARP1 is the enzyme responsible for the majority of the poly(ADP-ribose) (pADPr) synthesis in Drosophila. Its activity can be easily evaluated in vitro by measuring the level of pADPr, which allow to study the effect of potential PARP1 upstream factors on PARP1 activity. However, PARP1 activity can be challenging to measure in vivo, due to the presence of PARG, since pADPr level is a consequence of the activity of both PARP1 that synthetizes pADPr and PARG that degrades it. An increase in PARG activity can hide an increase of PARP1 activity. In this context, the effect of potential upstream factors on PARP1 activity can be hard to measure. Here, we describe a genetic background where PARG is absent to study changes in PARP1 activity at different developmental time points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D'Amours D, Desnoyers S, D'Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268

    Article  CAS  Google Scholar 

  2. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13(7):411–424

    Article  CAS  Google Scholar 

  3. Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263

    Article  CAS  Google Scholar 

  4. Ji Y, Tulin AV (2010) The roles of PARP1 in gene control and cell differentiation. Curr Opin Genet Dev 20(5):512–518

    Article  CAS  Google Scholar 

  5. Ji Y, Tulin AV (2012) Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nat Commun 3:760

    Article  Google Scholar 

  6. Kotova E, Jarnik M, Tulin AV (2010) Uncoupling of the transactivation and transrepression functions of PARP1 protein. Proc Natl Acad Sci U S A 107(14):6406–6411

    Article  CAS  Google Scholar 

  7. Lodhi N, Kossenkov AV, Tulin AV (2014) Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark. Nucleic Acids Res 42(11):7028–7038

    Article  CAS  Google Scholar 

  8. Thomas C, Ji Y, Wu C, Datz H, Boyle C, MacLeod B et al (2019) Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proc Natl Acad Sci U S A 116(20):9941–9946

    Article  CAS  Google Scholar 

  9. Ummarino S, Hausman C, Di Ruscio A (2021) The PARP way to epigenetic changes. Genes (Basel) 12(3):446

    Google Scholar 

  10. Liu C, Yu X (2015) ADP-ribosyltransferases and poly ADP-ribosylation. Curr Protein Pept Sci 16(6):491–501

    Article  CAS  Google Scholar 

  11. Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113(6):677–683

    Article  CAS  Google Scholar 

  12. Hanai S, Kanai M, Ohashi S, Okamoto K, Yamada M, Takahashi H et al (2004) Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc Natl Acad Sci U S A 101(1):82–86

    Article  CAS  Google Scholar 

  13. Kotova E, Jarnik M, Tulin AV (2009) Poly (ADP-ribose) polymerase 1 is required for protein localization to Cajal body. PLoS Genet 5(2):e1000387

    Article  Google Scholar 

  14. Tulin A, Naumova NM, Menon AK, Spradling AC (2006) Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing. Genetics 172(1):363–371

    Article  CAS  Google Scholar 

  15. Manasaryan G, Suplatov D, Pushkarev S, Drobot V, Kuimov A, Svedas V et al (2021) Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose) polymerase family proteins. Cancers (Basel) 13(6):1201

    Google Scholar 

  16. Li N, Chen J (2014) ADP-ribosylation: activation, recognition, and removal. Mol Cells 37(1):9–16

    Article  CAS  Google Scholar 

  17. Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16(16):2108–2119

    Article  CAS  Google Scholar 

  18. Bordet G, Kotova E, Tulin AV (2022) Poly(ADP-ribosyl)ating pathway regulates development from stem cell niche to longevity control. Life Sci Alliance 5(3):e202101071

    Google Scholar 

  19. Thomas CJ, Kotova E, Andrake M, Adolf-Bryfogle J, Glaser R, Regnard C et al (2014) Kinase-mediated changes in nucleosome conformation trigger chromatin decondensation via poly(ADP-ribosyl)ation. Mol Cell 53(5):831–842

    Article  CAS  Google Scholar 

  20. Lai YC, Aneja RK, Satchell MA, Clark RSB (2017) Detecting and quantifying pADPr in vivo. Methods Mol Biol 1608:27–43

    Article  CAS  Google Scholar 

  21. Riddiford LM, Cherbas P, Truman JW (2000) Ecdysone receptors and their biological actions. Vitam Horm 60:1–73

    Article  CAS  Google Scholar 

  22. Andrew DJ, Henderson KD, Seshaiah P (2000) Salivary gland development in Drosophila melanogaster. Mech Dev 92(1):5–17

    Article  CAS  Google Scholar 

  23. Dahmann C (2009) Drosophila : methods and protocols. Methods in molecular biology, vol 420. Humana Press, New York

    Google Scholar 

  24. Ashburner M, Golic KG, Hawley RS (2004) Drosophila: a laboratory handbook. Cold spring harbor laboratory press

    Google Scholar 

  25. Restrepo S, Zartman JJ, Basler K (2016) Cultivation and Live Imaging of Drosophila Imaginal Discs. Methods Mol Biol 1478:203–213

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding for this project was provided by National Science Foundation MCB-1616740 to AVT. Funding agencies had no role in study design, data collection, data analysis, interpretation, or writing of the report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei V. Tulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bordet, G., Tulin, A.V. (2023). Using Drosophila Genetics to Identify Factors that Affect PARP1 Activity In Vivo. In: Tulin, A.V. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 2609. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2891-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2891-1_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2890-4

  • Online ISBN: 978-1-0716-2891-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics