Skip to main content

Methods to Assess the Role of PARPs in Regulating Mitochondrial Oxidative Function

  • Protocol
  • First Online:
Poly(ADP-Ribose) Polymerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2609))

Abstract

PARP enzymes are involved in metabolic regulation and impact on a plethora of cellular metabolic pathways, among them, mitochondrial oxidative metabolism. The detrimental effects of PARP1 overactivation upon oxidative stress on mitochondrial oxidative metabolism was discovered in 1998. Since then, there was an enormous blooming in the understanding of the interplay between PARPs and mitochondria. Mitochondrial activity can be assessed by a comprehensive set of methods that we aim to introduce here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virag L, Salzman AL, Szabo C (1998) Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J Immunol 161(7):3753–3759

    CAS  Google Scholar 

  2. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263

    Article  CAS  Google Scholar 

  3. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016

    Article  CAS  Google Scholar 

  4. DuBoff B, Feany M, Gotz J (2013) Why size matters – balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci 36(6):325–335

    Article  CAS  Google Scholar 

  5. Wen Y, Li W, Poteet EC, Xie L, Tan C, Yan LJ et al (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem 286(18):16504–16515

    Article  CAS  Google Scholar 

  6. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159

    Article  CAS  Google Scholar 

  7. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27(12):639–645

    Article  CAS  Google Scholar 

  8. Dagda RK (2019) Mito-morphology macro. https://imagejdocu.tudor.lu/plugin/morphology/mitochondrial_morphology_macro_plug-in/start. https://imagejdocu.tudor.lu/plugin/morphology/mitochondrial_morphology_macro_plug-in/start. Accessed 24 June 2020

  9. Sprenger HG, Langer T (2019) The good and the bad of mitochondrial breakups. Trends Cell Biol 29(11):888–900. https://doi.org/10.1016/j.tcb.2019.08.003

    Article  CAS  Google Scholar 

  10. Virag L, Szabo C (2000) BCL-2 protects peroxynitrite-treated thymocytes from poly(ADP-ribose) synthase (PARS)-independent apoptotic but not from PARS-mediated necrotic cell death. Free Radic Biol Med 29(8):704–713

    Article  CAS  Google Scholar 

  11. Bai P, Nagy L, Fodor T, Liaudet L, Pacher P (2015) Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol Metab 26(2):75–83

    Article  CAS  Google Scholar 

  12. Sims JL, Berger SJ, Berger NA (1983) Poly(ADP-ribose) polymerase inhibitors preserve nicotinamide adenine dinucleotide and adenosine 5′-triphosphate pools in DNA-damaged cells: mechanism of stimulation of unscheduled DNA synthesis. Biochemistry 22(22):5188–5194. https://doi.org/10.1021/bi00291a019

    Article  CAS  Google Scholar 

  13. Chiarugi A (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol Sci 23(3):122–129

    Article  CAS  Google Scholar 

  14. Formentini L, Macchiarulo A, Cipriani G, Camaioni E, Rapizzi E, Pellicciari R et al (2009) Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J Biol Chem 284(26):17668–17676

    Article  CAS  Google Scholar 

  15. Cantó C, Sauve A, Bai P (2013) Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol Asp Med 34(6):1168–1201. https://doi.org/10.1016/j.mam.2013.01.004

    Article  CAS  Google Scholar 

  16. Houtkooper RH, Canto C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2):194–223

    Article  CAS  Google Scholar 

  17. Brunyanszki A, Szczesny B, Virag L, Szabo C (2016) Mitochondrial poly(ADP-ribose) polymerase: the wizard of Oz at work. Free Radic Biol Med 100:257–270

    Article  CAS  Google Scholar 

  18. Köritzer J, Blenn C, Bürkle A, Beneke S (2021) Mitochondria are devoid of poly(ADP-ribose)polymerase-1, but harbor its product oligo(ADP-ribose). J Cell Biochem 122(5):507–523. https://doi.org/10.1002/jcb.29887

    Article  CAS  Google Scholar 

  19. Pirinen E, Cantó E, Jo SK, Morato L, Zhang H, Menzies KJ et al (2014) Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab 19(6):1034–1041

    Article  CAS  Google Scholar 

  20. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C et al (2013) The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154(2):430–441

    Article  CAS  Google Scholar 

  21. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G et al (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497(7450):451–457

    Article  CAS  Google Scholar 

  22. Rodriguez-Vargas JM, Martin-Hernandez K, Wang W, Kunath N, Suganthan R, Amé JC et al (2020) Parp3 promotes astrocytic differentiation through a tight regulation of Nox4-induced ROS and mTorc2 activation. Cell Death Dis 11(11):954. https://doi.org/10.1038/s41419-020-03167-5

    Article  CAS  Google Scholar 

  23. Yeh TY, Beiswenger KK, Li P, Bolin KE, Lee RM, Tsao TS et al (2009) Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes 11:2476–2485

    Article  Google Scholar 

  24. Wang H, Kuusela S, Rinnankoski-Tuikka R, Dumont V, Bouslama R, Ramadan UA et al (2020) Tankyrase inhibition ameliorates lipid disorder via suppression of PGC-1alpha PARylation in db/db mice. Int J Obes 44(8):1691–1702. https://doi.org/10.1038/s41366-020-0573-z

    Article  CAS  Google Scholar 

  25. Marton J, Fodor T, Nagy L, Vida A, Kis G, Brunyanszki A et al (2018) PARP10 (ARTD10) modulates mitochondrial function. PLoS One 13(1):e0187789

    Article  Google Scholar 

  26. Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C et al (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13(4):461–468. https://doi.org/10.1016/j.cmet.2011.03.004

    Article  CAS  Google Scholar 

  27. Bai P, Canto C, Brunyánszki A, Huber A, Szántó M, Cen Y et al (2011) PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab 13(4):450–460. https://doi.org/10.1016/j.cmet.2011.03.013

    Article  CAS  Google Scholar 

  28. Nagy L, Rauch B, Balla N, Ujlaki G, Kis G, Abdul-Rahman O et al (2019) Olaparib induces browning of in vitro cultures of human primary white adipocytes. Biochem Pharmacol 25(19):30250–20253

    Google Scholar 

  29. Mukhopadhyay P, Horvath B, Rajesh M, Varga ZV, Gariani K, Ryu D et al (2017) PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J Hepatol 66(3):589–600

    Article  CAS  Google Scholar 

  30. Cardinal JW, Allan DJ, Cameron DP (1999) Poly(ADP-ribose)polymerase activation determines strain sensitivity to streptozotocin-induced beta cell death in inbred mice. J Mol Endocrinol 22(1):65–70

    Article  CAS  Google Scholar 

  31. Burkart V, Blaeser K, Kolb H (1999) Potent beta-cell protection in vitro by an isoquinolinone-derived PARP inhibitor. Horm Metab Res 31(12):641–644

    Article  CAS  Google Scholar 

  32. Bai P, Houten SM, Huber A, Schreiber V, Watanabe M, Kiss B et al (2007) Poly(ADP-ribose) polymerase-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma heterodimer. J Biol Chem 282(52):37738–37746

    Article  CAS  Google Scholar 

  33. Szanto M, Rutkai I, Hegedus C, Czikora A, Rozsahegyi M, Kiss B et al (2011) Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction. Cardiovasc Res 92(3):430–438

    Article  CAS  Google Scholar 

  34. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567):550–553

    Article  CAS  Google Scholar 

  35. Fodor T, Szanto M, Abdul-Rahman O, Nagy L, Der A, Kiss B et al (2016) Combined treatment of MCF-7 cells with AICAR and methotrexate, arrests cell cycle and reverses Warburg metabolism through AMP-activated protein kinase (AMPK) and FOXO1. PLoS One 11(2):e0150232. https://doi.org/10.1371/journal.pone.0150232

    Article  CAS  Google Scholar 

  36. Curtin NJ, Szabo C (2020) Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 19(10):711–736. https://doi.org/10.1038/s41573-020-0076-6

    Article  CAS  Google Scholar 

  37. Lee A (2021) Fuzuloparib: first approval. Drugs 81(10):1221–1226. https://doi.org/10.1007/s40265-021-01541-x

    Article  CAS  Google Scholar 

  38. Markham A (2021) Pamiparib: first approval. Drugs 81(11):1343–1348. https://doi.org/10.1007/s40265-021-01552-8

    Article  CAS  Google Scholar 

  39. Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG et al (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30(3):283–288

    Article  CAS  Google Scholar 

  40. Kovács I, Horváth M, Kovács T, Somogyi K, Tretter L, Geiszt M et al (2014) Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes. Free Radic Res 48(10):1190–1199. https://doi.org/10.3109/10715762.2014.938234

    Article  Google Scholar 

  41. Kristof E, Klusoczki A, Veress R, Shaw A, Combi ZS, Varga K et al (2019) Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 19(19):015

    Google Scholar 

  42. Hegedűs C, Juhász T, Fidrus E, Janka EA, Juhász G, Boros G et al (2021) Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biol 38:101808. https://doi.org/10.1016/j.redox.2020.101808

    Article  CAS  Google Scholar 

  43. Hegedűs C, Boros G, Fidrus E, Kis GN, Antal M, Juhász T et al (2020) PARP1 inhibition augments UVB-mediated mitochondrial changes – implications for UV-induced DNA repair and photocarcinogenesis. Cancers (Basel) 12(1):5. https://doi.org/10.3390/cancers12010005

    Article  CAS  Google Scholar 

  44. Abdul-Rahman O, Kristof E, Doan-Xuan QM, Vida A, Nagy L, Horvath A et al (2016) AMP-activated kinase (AMPK) activation by AICAR in human white adipocytes derived from pericardial white adipose tissue stem cells induces a partial beige-like phenotype. PLoS One 11(6):e0157644

    Article  Google Scholar 

  45. Marton J, Peter M, Balogh G, Bodi B, Vida A, Szanto M et al (2018) Poly(ADP-ribose) polymerase-2 is a lipid-modulated modulator of muscular lipid homeostasis. BBA-Mol Cell Biol L 1863(11):1399–1412. https://doi.org/10.1016/j.bbalip.2018.07.013

    Article  CAS  Google Scholar 

  46. Szanto M, Brunyanszki A, Marton J, Vamosi G, Nagy L, Fodor T et al (2014) Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels. Biochim Biophys Acta 1842(4):594–602

    Article  CAS  Google Scholar 

  47. Jankó L, Kovács T, Laczik M, Sári Z, Ujlaki G, Kis G et al (2021) Silencing of poly(ADP-ribose) polymerase-2 induces mitochondrial reactive species production and mitochondrial fragmentation. Cell 10(6):1387. https://doi.org/10.3390/cells10061387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the NKFIH (K123975, K142141, FK128387, TKP2021-EGA-19, TKP2021-EGA-20). The Project no. TKP2021-EGA-19 and TKP2021-EGA-20 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme. The POST-COVID2021-33 grant to PB was from the Hungarian Academy of Sciences. EM is supported by the Bolyai Fellowship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kovács, T., Rauch, B., Mikó, E., Bai, P. (2023). Methods to Assess the Role of PARPs in Regulating Mitochondrial Oxidative Function. In: Tulin, A.V. (eds) Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 2609. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2891-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2891-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2890-4

  • Online ISBN: 978-1-0716-2891-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics