Skip to main content

Extended Methods for 2D Confinement

  • Protocol
  • First Online:
Cell Migration in Three Dimensions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2608))

Abstract

Physical confinement in microfluidic devices has become a common technique to induce and study cell migration in a large range of cell types. Confined migration was previously understudied due to the limitations of 2D migration assays but has emerged as an important mode of migration in the past decade. Furthermore, confinement improves the quality of the imaging and simplifies the analysis of trajectories by confining migration to the plane of acquisition. Protocols described in this chapter relate to methods extending the previously published 2D confinement technique. First, we explain a method to increase the complexity of the confinement chamber by microfabricating nanometer-sized PDMS grooves on the bottom surface, usually used for contact guidance studies. Then, we describe a method to perform the confinement on cells embedded inside a μm-thin 3D collagen gel. Finally, we describe an alternative method to confine cells based on agarose, so that cells can be fixed or drug perfused while being confined, which is currently not possible in the 2D confinement silicone-based device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lämmermann T, Bader BL, Monkley SJ et al (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55. https://doi.org/10.1038/nature06887

    Article  CAS  Google Scholar 

  2. Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci 109:14434–14439. https://doi.org/10.1073/pnas.1207968109

    Article  Google Scholar 

  3. Garcia-Arcos JM, Chabrier R, Deygas M et al (2019) Reconstitution of cell migration at a glance. J Cell Sci 132(jcs225565). https://doi.org/10.1242/jcs.225565

  4. Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol Baltim Md 115:1650–1656

    CAS  Google Scholar 

  5. Heit B, Kubes P (2003) Measuring chemotaxis and chemokinesis: the under-agarose cell migration assay. Sci STKE 2003:pl5. https://doi.org/10.1126/stke.2003.170.pl5

    Article  Google Scholar 

  6. Zatulovskiy E, Tyson R, Bretschneider T, Kay RR (2014) Bleb-driven chemotaxis of Dictyostelium cells. J Cell Biol 204:1027–1044. https://doi.org/10.1083/jcb.201306147

    Article  CAS  Google Scholar 

  7. Srivastava N, Kay RR, Kabla AJ (2017) Method to study cell migration under uniaxial compression. Mol Biol Cell 28:809–816. https://doi.org/10.1091/mbc.e16-08-0575

    Article  CAS  Google Scholar 

  8. Tranquillo RT, Zigmond SH, Lauffenburger DA (1988) Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay. Cell Motil 11:1–15. https://doi.org/10.1002/cm.970110102

    Article  CAS  Google Scholar 

  9. Lämmermann T, Renkawitz J, Wu X et al (2009) Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113:5703–5710. https://doi.org/10.1182/blood-2008-11-191,882

    Article  Google Scholar 

  10. Irimia D, Charras G, Agrawal N et al (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7:1783. https://doi.org/10.1039/b710524j

    Article  CAS  Google Scholar 

  11. Le Berre M, Zlotek-Zlotkiewicz E, Bonazzi D et al (2014) Methods for two-dimensional cell confinement. In: Prescott DM (ed) Methods in cell biology. Elsevier, pp 213–229

    Google Scholar 

  12. Liu Y-J, Le Berre M, Lautenschlaeger F et al (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160:659–672. https://doi.org/10.1016/j.cell.2015.01.007

    Article  CAS  Google Scholar 

  13. Ruprecht V, Wieser S, Callan-Jones A et al (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160:673–685. https://doi.org/10.1016/j.cell.2015.01.008

    Article  CAS  Google Scholar 

  14. Brunet T, Albert M, Roman W et al (2021) A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 10. https://doi.org/10.7554/eLife.61037

  15. Venturini V, Pezzano F, Castro FC et al (2020) The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 370. https://doi.org/10.1126/science.aba2644

  16. Lomakin AJ, Cattin CJ, Cuvelier D et al (2020) The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 370. https://doi.org/10.1126/science.aba2894

  17. Harrison RG (1914) The reaction of embryonic cells to solid structures. J Exp Zool 17:521–544. https://doi.org/10.1002/jez.1400170403

    Article  Google Scholar 

  18. Weiss P (1934) In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J Exp Zool 68:393–448. https://doi.org/10.1002/jez.1400680304

    Article  Google Scholar 

  19. Dunn GA, Heath JP (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101:1–14. https://doi.org/10.1016/0014-4827(76)90405-5

    Article  CAS  Google Scholar 

  20. Dalton BA, Walboomers XF, Dziegielewski M, et al. (2001) Modulation of epithelial tissue and cell migration by microgrooves. J Biomed Mater Res 56:195–207. https://doi.org/10.1002/1097-4636(200108)56:2<195::aid-jbm1084>3.0.co;2-7

  21. Gibbons A, Lang O, Kojima Y et al (2017) Real-time visualization of cardiac cell beating behaviour on polymer diffraction gratings. RSC Adv 7(51121–51):129. https://doi.org/10.1039/C7RA06515A

    Article  Google Scholar 

  22. Richards J, Larson L, Yang J et al (1983) Method for culturing mammary epithelial cells in a rat tail collagen gel matrix. J Tissue Cult Methods 8:31–36. https://doi.org/10.1007/BF01834632

    Article  Google Scholar 

  23. Kim D, Herr AE (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7:041501. https://doi.org/10.1063/1.4816934

    Article  CAS  Google Scholar 

  24. Bergert M, Erzberger A, Desai RA et al (2015) Force transmission during adhesion-independent migration. Nat Cell Biol 17:524–529. https://doi.org/10.1038/ncb3134

    Article  CAS  Google Scholar 

  25. Azioune A, Carpi N, Tseng Q et al (2010) Protein micropatterns: A direct printing protocol using deep UVs. Methods Cell Biol 97:133–146. https://doi.org/10.1016/S0091-679X(10)97008-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sergii Rudiuk (Ecole Normale Superieure, Paris) for helping with the AFM profiling of the CD-R PDMS replica. We thank Jin Wei (Ecole Normale Superieure, Paris) for helping with the SEM imaging of the CD-R PDMS replica. This work was supported by a French Agence Nationale de la Recherche (ANR) grant to MP (ANR-19-CE13-0030). This work has also received the support of Institut Pierre-Gilles de Gennes-IPGG (équipement d’excellence, “investissements d’avenir,” program ANR-10-EQPX-34) and laboratoire d’excellence, “investissements d’avenir” program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31. We also thank the staff members at the Nikon Imaging Center at Institut Curie and the technological platform at Institut Pierre-Gilles de Gennes (IPGG) for providing equipment and technical assistance. JMGA has received funding from Inserm (ITMO Cancer FDV2016), Fondation ARC pour la recherche sur le cancer (DOC20190508743), and a short-term EMBO fellowship (7873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Piel .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material(s)

Video 1

Representative time-lapse images from confocal fluorescence spinning disk microscopy of HeLa Kyoto cells Lifeact-mCherry MYH9-GFP confined under 3 μm over a nanogrooved surface treated with 0,5 mg/ml PLL-g-PEG (ZIP 95994 kb)

Video 2

Representative z-stack images from confocal fluorescence spinning disk microscopy of HeLa Kyoto cells Lifeact-mCherry MYH9-GFP confined under 10 and under 3 μm embedded in a collagen type I gel of 1 mg/mL (ZIP 4981 kb)

Agarose_holder_fluorodish.stl

3D print model for the agarose confiner to be used with glass-bottom FluoroDish™ Petri dishes (WPI) (ZIP 33 kb)

Agarose_holder_TTPdish.stl

3D print model for the agarose confiner to be used with TPP™ Polystyrene Petri dishes (ZIP 31 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

García-Arcos, J.M., Gateau, K., Venkova, L., Piel, M. (2023). Extended Methods for 2D Confinement. In: Margadant, C. (eds) Cell Migration in Three Dimensions. Methods in Molecular Biology, vol 2608. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2887-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2887-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2886-7

  • Online ISBN: 978-1-0716-2887-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics