Skip to main content

Genotyping of Transposable Element Insertions Segregating in Human Populations Using Short-Read Realignments

  • Protocol
  • First Online:
Transposable Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2607))

Abstract

Transposable element (TE) insertions are a major source of structural variation in the human genome. Due to the repetitive nature and biological importance of TEs, many bioinformatic tools have been developed to identify and genotype TE insertion polymorphisms using high-throughput short-reads. In this chapter, we outline recently developed methods to characterize TE insertion polymorphisms in human populations. We also provide detailed protocols to tackle this question primarily using three software: MELT2, ERVcaller, and TypeREF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zook JM, Hansen NF, Olson ND et al (2020) A robust benchmark for detection of germline large deletions and insertions. Nat Biotechnol 38:1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Groza C, Chen X, Pacis A et al (2021) Genome graphs detect human polymorphisms in active epigenomic states during influenza infection. https://doi.org/10.1101/2021.09.29.462206

  4. Goubert C, Zevallos NA, Feschotte C (2020) Contribution of unfixed transposable element insertions to human regulatory variation. Philos Trans R Soc Lond Ser B Biol Sci 375:20190331

    Article  CAS  Google Scholar 

  5. Kazazian HH Jr, Moran JV (2017) Mobile DNA in health and disease. N Engl J Med 377:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Payer LM, Burns KH (2019) Transposable elements in human genetic disease. Nat Rev Genet 20:760–772

    Article  CAS  PubMed  Google Scholar 

  7. Tang Z, Steranka JP, Ma S et al (2017) Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc Natl Acad Sci U S A 114:E733–E740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karamitros T, Hurst T, Marchi E et al (2018) Human Endogenous Retrovirus-K HML-2 integration within RASGRF2 is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proc Natl Acad Sci U S A 115:10434–10439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wildschutte JH, Williams ZH, Montesion M et al (2016) Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci U S A 113:E2326–E2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watkins WS, Feusier JE, Thomas J et al (2020) The Simons Genome Diversity Project: a global analysis of mobile element diversity. Genome Biol Evol 12:779–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chu C, Borges-Monroy R, Viswanadham VV et al (2021) Comprehensive identification of transposable element insertions using multiple sequencing technologies. Nat Commun 12:3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gardner EJ, Lam VK, Harris DN et al (2017) The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res 27:1916–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sudmant PH, Rausch T, Gardner EJ et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stewart C, Kural D, Strömberg MP et al (2011) A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 7:e1002236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rishishwar L, Mariño-Ramírez L, Jordan IK (2016) Benchmarking computational tools for polymorphic transposable element detection. Brief Bioinform bbw072

    Google Scholar 

  16. Vendrell-Mir P, Barteri F, Merenciano M et al (2019) A benchmark of transposon insertion detection tools using real data. Mob DNA 10:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrska-Bishop M, Evani US, Zhao X, et al (2021) High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios, https://doi.org/10.1101/2021.02.06.430068

  18. Niu Y, Teng X, Zhou H et al (2022) Characterizing mobile element insertions in 5675 genomes. Nucleic Acids Res 50:2493–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kojima S, Koyama S, Ka M et al (2022) Mobile elements in human population-specific genome and phenotype divergence. https://doi.org/10.1101/2022.03.25.485726

  20. Xue B, Sechi LA, Kelvin DJ (2020) Human endogenous retrovirus K (HML-2) in health and disease. Front Microbiol 11:1690

    Article  PubMed  PubMed Central  Google Scholar 

  21. Feusier J, Watkins WS, Thomas J et al (2019) Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res 29:1567–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ostertag EM, Kazazian HH Jr (2001) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11:2059–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer TJ, Srikanta D, Conlin EM et al (2010) Heads or tails: L1 insertion-associated 5′ homopolymeric sequences. Mob DNA 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mager DL, Goodchild NL (1989) Homologous recombination between the LTRs of a human retrovirus-like element causes a 5-kb deletion in two siblings. Am J Hum Genet 45:848–854

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas J, Perron H, Feschotte C (2018) Variation in proviral content among human genomes mediated by LTR recombination. Mob DNA 9:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu T, Huang X, Dou S et al (2021) A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies. Nucleic Acids Res 49:e44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bowles H, Kabiljo R, Jones A et al (2022) An assessment of bioinformatics tools for the detection of human endogenous retroviral insertions in short-read genome sequencing data. https://doi.org/10.1101/2022.02.18.481042

  28. Chen X, Li D (2019) ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data. Bioinformatics 35:3913–3922

    Article  CAS  PubMed  Google Scholar 

  29. Goubert C, Thomas J, Payer LM et al (2020) TypeTE: a tool to genotype mobile element insertions from whole genome resequencing data. Nucleic Acids Res 48:e36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Di Tommaso P, Chatzou M, Floden EW et al (2017) Nextflow enables reproducible computational workflows. Nat Biotechnol 35:316–319

    Article  PubMed  Google Scholar 

  32. Mitra-Behura S, Fiolka RP, Daetwyler S (2022) Singularity containers improve reproducibility and ease of use in computational image analysis workflows. Front Bioinform 1

    Google Scholar 

  33. Merkel D (2014) Docker: lightweight linux containers for consistent development and deployment. 2

    Google Scholar 

  34. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, http://arxiv.org/abs/1303.3997

  35. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zook JM, Hansen NF, Olson ND et al (2019) A robust benchmark for germline structural variant detection. https://doi.org/10.1101/664623

  38. Boissinot S, Davis J, Entezam A et al (2006) Fitness cost of LINE-1 (L1) activity in humans. Proc Natl Acad Sci U S A 103:9590–9594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cordaux R, Lee J, Dinoso L et al (2006) Recently integrated Alu retrotransposons are essentially neutral residents of the human genome. Gene 373:138–144

    Article  CAS  PubMed  Google Scholar 

  40. Rishishwar L, Tellez Villa CE, Jordan IK (2015) Transposable element polymorphisms recapitulate human evolution. Mob DNA 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  41. Doronina L, Reising O, Clawson H et al (2019) True homoplasy of retrotransposon insertions in primates. Syst Biol 68:482–493

    Article  CAS  PubMed  Google Scholar 

  42. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Puurand T, Kukuškina V, Pajuste F-D et al (2019) AluMine: alignment-free method for the discovery of polymorphic Alu element insertions. Mob DNA 10:31

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rajaby R, Sung W-K (2018) TranSurVeyor: an improved database-free algorithm for finding non-reference transpositions in high-throughput sequencing data. Nucleic Acids Res 46:e122

    PubMed  PubMed Central  Google Scholar 

  45. Santander CG, Gambron P, Marchi E et al (2017) STEAK: a specific tool for transposable elements and retrovirus detection in high-throughput sequencing data. Virus Evol 3:vex023

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bogaerts-Márquez M, Barrón MG, Fiston-Lavier A-S et al (2019) T-lex3: an accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data. Bioinformatics 36(4):1191

    Google Scholar 

  47. Zhuang J, Wang J, Theurkauf W et al (2014) TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 42:6826–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wildschutte JH, Baron A, Diroff NM et al (2015) Discovery and characterization of Alu repeat sequences via precise local read assembly. Nucleic Acids Res 43:10292–10307

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, X., Bourque, G., Goubert, C. (2023). Genotyping of Transposable Element Insertions Segregating in Human Populations Using Short-Read Realignments. In: Branco, M.R., de Mendoza Soler, A. (eds) Transposable Elements. Methods in Molecular Biology, vol 2607. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2883-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2883-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2882-9

  • Online ISBN: 978-1-0716-2883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics