Skip to main content

pSILAC-Based Determination of Cellular Protein Sorting into Extracellular Vesicles

  • Protocol
  • First Online:
Book cover SILAC

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2603))

Abstract

The protein cargo of extracellular vesicles (EVs) determines their impact on recipient cell types and the downstream effects on biological function. Environmental cues can modify EV loading with proteins derived from the plasma membrane via endocytosis, obtained from the preexisting cytosolic pool via active sorting, or packaging with newly synthesized proteins drawn from trans-golgi networks. Given the major impact these pathways exert on EV content and functional potential, it is important to study how defined stimuli influence protein sorting into these vesicles for dispersal. To this end, pSILAC-based approaches can be used to pulse/trace the origins of EV protein content and thereby provide valuable insight into vesicle biology and likely effects on intercellular communication in diverse settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367:eaau6977. https://doi.org/10.1126/science.aau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222. https://doi.org/10.1016/j.scr.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  4. Park JE, Dutta B, Tse SW, Gupta N, Tan CF, Low JK et al (2019) Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene 38:5158–5173. https://doi.org/10.1038/s41388-019-0782-x

    Article  CAS  PubMed  Google Scholar 

  5. Gallart-Palau X, Guo X, Serra A, Sze SK (2020) Alzheimer’s disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther 12:54. https://doi.org/10.1186/s13195-020-00623-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tse SW, Tan CF, Park JE, Gnanasekaran J, Gupta N, Low JK et al (2020) Microenvironmental hypoxia induces dynamic changes in lung cancer synthesis and secretion of extracellular vesicles. Cancer 12:2917. https://doi.org/10.3390/cancers12102917

    Article  CAS  Google Scholar 

  7. Tan CF, Teo HS, Park JE, Dutta B, Tse SW, Leow MK et al (2020) Exploring extracellular vesicles biogenesis in hypothalamic cells through a heavy isotope pulse/trace proteomic approach. Cell 9:1320. https://doi.org/10.3390/cells9051320

  8. Gupta N, Park JE, Tse W, Low JK, Kon OL, McCarthy N, Sze SK (2019) ERO1α promotes hypoxic tumor progression and is associated with poor prognosis in pancreatic cancer. Oncotarget 10:5970–5982. https://doi.org/10.18632/oncotarget.27235

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park JE, Tse SW, Xue G, Assisi C, Maqueda AS, Ramon GPX et al (2019) Pulsed SILAC-based proteomic analysis unveils hypoxia- and serum starvation-induced de novo protein synthesis with PHD finger protein 14 (PHF14) as a hypoxia sensitive epigenetic regulator in cell cycle progression. Oncotarget 10:2136–2150. https://doi.org/10.18632/oncotarget.26669

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chua SL, Yam JK, Hao P, Adav SS, Salido MM, Liu Y et al (2016) Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nat Commun 7:10750. https://doi.org/10.1038/ncomms10750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is in part supported by the Singapore National Medical Research Council (NMRC/OFIRG/0003/2016) and Singapore Ministry of Education (MOE2018-T1-001-078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu Kwan Sze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ngan, SF.C., McCarthy, N.E., Sze, S.K. (2023). pSILAC-Based Determination of Cellular Protein Sorting into Extracellular Vesicles. In: Luque-Garcia, J.L. (eds) SILAC. Methods in Molecular Biology, vol 2603. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2863-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2863-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2862-1

  • Online ISBN: 978-1-0716-2863-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics