Skip to main content

Multiplexed Molecular Tension Sensor Measurements Using PIE-FLIM

  • Protocol
  • First Online:
Mechanobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2600))

  • 1072 Accesses

Abstract

Genetically encoded Förster Resonance Energy Transfer (FRET)-based tension sensors were developed to enable the quantification of piconewton (pN)-scale forces that act across distinct proteins in living cells and organisms. An important extension of this technology is the multiplexing of tension sensors to monitor several independent FRET probes in parallel. Here we describe how pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) can be implemented to enable the analysis of two co-expressed tension sensor constructs. Our protocol covers all essential steps from biosensor expression and live cell PIE image acquisition to lifetime calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323. https://doi.org/10.1038/nature10316

    Article  CAS  Google Scholar 

  2. Petridou NI, Spiro Z, Heisenberg C-P (2017) Multiscale force sensing in development. Nat Cell Biol 19(6):581–588. https://doi.org/10.1038/ncb3524

    Article  CAS  Google Scholar 

  3. Kanoldt V, Fischer L, Grashoff C (2019) Unforgettable force - crosstalk and memory of mechanosensitive structures. Biol Chem 400(6):687–698. https://doi.org/10.1515/hsz-2018-0328

    Article  CAS  Google Scholar 

  4. Roca-Cusachs P, Conte V, Trepat X (2017) Quantifying forces in cell biology. Nat Cell Biol 19(7):742–751. https://doi.org/10.1038/ncb3564

    Article  CAS  Google Scholar 

  5. Fischer LS, Rangarajan S, Sadhanasatish T et al (2021) Molecular force measurement with tension sensors. Annu Rev Biophys 50:595–616. https://doi.org/10.1146/annurev-biophys-101920-064756

    Article  CAS  Google Scholar 

  6. Grashoff C, Hoffman BD, Brenner MD et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–U143. https://doi.org/10.1038/nature09198

    Article  CAS  Google Scholar 

  7. Austen K, Ringer P, Mehlich A et al (2015) Extracellular rigidity sensing by Talin isoform-specific mechanical linkages. Nat Cell Biol 17(12):1597–1606. https://doi.org/10.1038/ncb3268

    Article  CAS  Google Scholar 

  8. Freikamp A, Cost A-L, Grashoff C (2016) The Piconewton force awakens: quantifying mechanics in cells. Trends Cell Biol 26(11):838–847. https://doi.org/10.1016/j.tcb.2016.07.005

    Article  Google Scholar 

  9. Kanoldt V, Kluger C, Barz C et al (2020) Metavinculin modulates force transduction in cell adhesion sites. Nat Commun 11(1):6403. https://doi.org/10.1038/s41467-020-20125-z

    Article  CAS  Google Scholar 

  10. Kumar A, Ouyang M, van den Dries K et al (2016) Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J Cell Biol 213(3):371–383. https://doi.org/10.1083/jcb.201510012

    Article  CAS  Google Scholar 

  11. Ringer P, Weißl A, Cost A-L et al (2017) Multiplexing molecular tension sensors reveals piconewton force gradient across Talin-1. Nat Methods 14(11):1090–1096. https://doi.org/10.1038/nmeth.4431

    Article  CAS  Google Scholar 

  12. Hernández-Varas P, Berge U, Lock JG et al (2015) A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nat Commun 6:7524. https://doi.org/10.1038/ncomms8524

    Article  CAS  Google Scholar 

  13. Rothenberg KE, Scott DW, Christoforou N et al (2018) Vinculin force-sensitive dynamics at focal adhesions enable effective directed cell migration. Biophys J 114(7):1680–1694. https://doi.org/10.1016/j.bpj.2018.02.019

    Article  CAS  Google Scholar 

  14. Chang C-W, Kumar S (2013) Vinculin tension distributions of individual stress fibers within cell-matrix adhesions. J Cell Sci 126(Pt 14):3021–3030. https://doi.org/10.1242/jcs.119032

    Article  CAS  Google Scholar 

  15. Price AJ, Cost A-L, Ungewiß H et al (2018) Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat Commun 9(1):5284. https://doi.org/10.1038/s41467-018-07523-0

    Article  CAS  Google Scholar 

  16. Borghi N, Sorokina M, Shcherbakova OG et al (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A 109(31):12568–12573. https://doi.org/10.1073/pnas.1204390109

    Article  Google Scholar 

  17. Conway DE, Breckenridge MT, Hinde E et al (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23(11):1024–1030. https://doi.org/10.1016/j.cub.2013.04.049

    Article  CAS  Google Scholar 

  18. Nordenfelt P, Elliott HL, Springer TA (2016) Coordinated integrin activation by actin-dependent force during T-cell migration. Nat Commun 7:13119. https://doi.org/10.1038/ncomms13119

    Article  CAS  Google Scholar 

  19. Krieg M, Dunn AR, Goodman MB (2014) Mechanical control of the sense of touch by β-spectrin. Nat Cell Biol 16(3):224–233. https://doi.org/10.1038/ncb2915

    Article  CAS  Google Scholar 

  20. Déjardin T, Carollo PS, Sipieter F et al (2020) Nesprins are mechanotransducers that discriminate epithelial-mesenchymal transition programs. J Cell Biol 219(10). https://doi.org/10.1083/jcb.201908036

  21. Carley E, Stewart RM, Zieman A et al (2021) The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. elife 10. https://doi.org/10.7554/eLife.58541

  22. Lemke SB, Weidemann T, Cost A-L et al (2019) A small proportion of Talin molecules transmit forces at developing muscle attachments in vivo. PLoS Biol 17(3):e3000057. https://doi.org/10.1371/journal.pbio.3000057

    Article  CAS  Google Scholar 

  23. Hirano S, Yamamoto T, Michiue T (2018) FRET-based tension measurement across actin-associated mechanotransductive structures using Lima1. Int J Dev Biol 62(9–10):631–636. https://doi.org/10.1387/ijdb.180110tm

    Article  CAS  Google Scholar 

  24. Lagendijk AK, Gomez GA, Baek S et al (2017) Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nat Commun 8(1):1402. https://doi.org/10.1038/s41467-017-01325-6

    Article  CAS  Google Scholar 

  25. Tao H, Zhu M, Lau K et al (2019) Oscillatory cortical forces promote three dimensional cell intercalations that shape the murine mandibular arch. Nat Commun 10(1):1703. https://doi.org/10.1038/s41467-019-09540-z

    Article  CAS  Google Scholar 

  26. Ham TR, Collins KL, Hoffman BD (2019) Molecular tension sensors: moving beyond force. Current Opinion in Biomedical Engineering 12:83–94. https://doi.org/10.1016/j.cobme.2019.10.003

    Article  Google Scholar 

  27. Freikamp A, Mehlich A, Klingner C et al (2017) Investigating piconewton forces in cells by FRET-based molecular force microscopy. J Struct Biol 197(1):37–42. https://doi.org/10.1016/j.jsb.2016.03.011

    Article  CAS  Google Scholar 

  28. Cost A-L, Ringer P, Chrostek-Grashoff A et al (2015) How to measure molecular forces in cells: a guide to evaluating genetically-encoded FRET-based tension sensors. Cell Mol Bioeng 8(1):96–105. https://doi.org/10.1007/s12195-014-0368-1

    Article  CAS  Google Scholar 

  29. Demeautis C, Sipieter F, Roul J et al (2017) Multiplexing PKA and ERK1 & 2 kinases FRET biosensors in living cells using single excitation wavelength dual colour FLIM. Sci Rep 7. https://doi.org/10.1038/srep41026

  30. Hendrix J, Lamb DC (2013) In: Digman MA, Stakic M, Gratton E (eds) Pulsed interleaved excitation: principles and applications, vol 518. Raster Image Correlation Spectroscopy and Number and Brightness Analysis, pp 205–243

    Google Scholar 

  31. Müller BK, Zaychikov E, Bräuchle C et al (2005) Pulsed interleaved excitation. Biophys J 89(5):3508–3522. https://doi.org/10.1529/biophysj.105.064766

    Article  CAS  Google Scholar 

  32. Reissaus CA, Day KH, Mirmira RG et al (2020) PIE-FLIM measurements of two different FRET-based biosensor activities in the same living cells. Biophys J 118(8):1820–1829. https://doi.org/10.1016/j.bpj.2020.03.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Grashoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Windgasse, L., Grashoff, C. (2023). Multiplexed Molecular Tension Sensor Measurements Using PIE-FLIM. In: Zaidel-Bar, R. (eds) Mechanobiology. Methods in Molecular Biology, vol 2600. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2851-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2851-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2850-8

  • Online ISBN: 978-1-0716-2851-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics