Skip to main content

Bioinformatic Analysis of the Subproteomic Profile of Cardiomyopathic Tissue

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2596))

Abstract

Following large-scale protein separation by two-dimensional gel electrophoresis or liquid chromatography, mass spectrometry–based proteomics can be used for the swift identification and characterization of cardiac proteins and their various proteoforms. Comparative cardiac proteomics has been widely applied for the systematic analysis of heart disease and the establishment of novel diagnostic protein biomarkers. The X-linked neuromuscular disorder Duchenne muscular dystrophy is a multisystemic disease that is characterized by late-onset cardiomyopathy. This chapter outlines the bioinformatic analysis of the subproteomic profile of cardiac tissue from wild-type versus the dystrophic mdx-4cv mouse model of dystrophinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matkovich SJ (2019) Multiomic approaches to delineate the pathogenesis of cardiac disease. Curr Opin Cardiol 34:246–253

    Article  PubMed  Google Scholar 

  2. Sohag MMH, Raqib SM, Akhmad SA (2021) OMICS approaches in cardiovascular diseases: a mini review. Genomics Inform 19:e13

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sarhene M, Wang Y, Wei J, Huang Y, Li M, Li L, Acheampong E, Zhengcan Z, Xiaoyan Q, Yunsheng X, Jingyuan M, Xiumei G, Guanwei F (2019) Biomarkers in heart failure: the past, current and future. Heart Fail Rev 24:867–903

    Article  PubMed  Google Scholar 

  4. Joshi A, Rienks M, Theofilatos K, Mayr M (2021) Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol 18:313–330

    Article  PubMed  Google Scholar 

  5. Gómez-Mendoza DP, Lara-Ribeiro AC, Verano-Braga T (2021) Pathological cardiac remodeling seen by the eyes of proteomics. Biochim Biophys Acta Proteins Proteom 1869:140622

    Article  PubMed  Google Scholar 

  6. Padula MP, Berry IJ, Rourke O, MB, Raymond BB, Santos J, Djordjevic SP (2017) A comprehensive guide for performing sample preparation and top-down protein analysis. Proteomes 5:11

    Article  PubMed Central  Google Scholar 

  7. Dowling P, Zweyer M, Swandulla D, Ohlendieck K (2019) Characterization of contractile proteins from skeletal muscle using gel-based top-down proteomics. Proteomes 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cupp-Sutton KA, Wu S (2020) High-throughput quantitative top-down proteomics. Mol Omics 16:91–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Carbonara K, Andonovski M, Coorssen JR (2021) Proteomes are of Proteoforms: embracing the complexity. Proteomes 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC (2020) A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes 8:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K (2020) Protocol for the bottom-up proteomic analysis of mouse spleen. STAR Protoc 1:100196

    Article  PubMed  PubMed Central  Google Scholar 

  12. Révész Á, Hevér H, Steckel A, Schlosser G, Szabó D, Vékey K, Drahos L (2021) Collision energies: optimization strategies for bottom-up proteomics. Mass Spectrom Rev 2:e21763

    Google Scholar 

  13. Meyers TA, Townsend D (2019) Cardiac pathophysiology and the future of cardiac therapies in Duchenne muscular dystrophy. Int J Mol Sci 20:4098

    Article  PubMed Central  CAS  Google Scholar 

  14. Shih JA, Folch A, Wong BL (2020) Duchenne muscular dystrophy: the heart of the matter. Curr Heart Fail Rep 17:57–66

    Article  PubMed  CAS  Google Scholar 

  15. Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A (2021) Duchenne muscular dystrophy. Nat Rev Dis Primers 7:13

    Article  PubMed  Google Scholar 

  16. Ohlendieck K, Swandulla D (2021) Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 73:1813–1839

    Article  Google Scholar 

  17. da Silva TD, Massetti T, Crocetta TB, de Mello Monteiro CB, Carll A, Vanderlei LCM, Arbaugh C, Oliveira FR, de Abreu LC, Ferreira Filho C, Godleski J, Ferreira C (2018) Heart rate variability and cardiopulmonary dysfunction in patients with Duchenne muscular dystrophy: a systematic review. Pediatr Cardiol 39:869–883

    Article  PubMed  Google Scholar 

  18. Łoboda A, Dulak J (2020) Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacol Rep 72:1227–1263

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kipke J, Birnkrant DJ, Jin JB, Aneja A, Bahler RC (2021) A systematic review of pharmacologic therapies for the cardiomyopathy of Duchenne muscular dystrophy. Pediatr Pulmonol 56:782–795

    Article  PubMed  Google Scholar 

  20. Holland A, Ohlendieck K (2014) Proteomic profiling of the dystrophin-deficient mdx phenocopy of dystrophinopathy-associated cardiomyopathy. Biomed Res Int 2014:246195

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gowran A, Brioschi M, Rovina D, Chiesa M, Piacentini L, Mallia S, Banfi C, Pompilio G, Santoro R (2021) Multiomic approaches to uncover the complexities of dystrophin-associated cardiomyopathy. Int J Mol Sci 22:8954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gulston MK, Rubtsov DV, Atherton HJ, Clarke K, Davies KE, Lilley KS, Griffin JL (2008) A combined metabolomic and proteomic investigation of the effects of a failure to express dystrophin in the mouse heart. J Proteome Res 7:2069–2077

    Article  PubMed  CAS  Google Scholar 

  23. Lewis C, Jockusch H, Ohlendieck K (2010) Proteomic profiling of the dystrophin-deficient MDX heart reveals drastically altered levels of key metabolic and contractile proteins. J Biomed Biotechnol 2010:648501

    Article  PubMed  PubMed Central  Google Scholar 

  24. Johnson EK, Zhang L, Adams ME, Phillips A, Freitas MA, Froehner SC, Green-Church KB, Montanaro F (2012) Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS One 7:e43515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Holland A, Dowling P, Zweyer M, Swandulla D, Henry M, Clynes M, Ohlendieck K (2013) Proteomic profiling of cardiomyopathic tissue from the aged mdx model of Duchenne muscular dystrophy reveals a drastic decrease in laminin, nidogen and annexin. Proteomics 13:2312–2323

    Article  PubMed  CAS  Google Scholar 

  26. Murphy S, Dowling P, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K (2016) Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. J Proteome 145:24–36

    Article  CAS  Google Scholar 

  27. Chung HS, Kim GE, Holewinski RJ, Venkatraman V, Zhu G, Bedja D, Kass DA, Van Eyk JE (2017) Transient receptor potential channel 6 regulates abnormal cardiac S-nitrosylation in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114:E10763–E10771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tamiyakul H, Kemter E, Kösters M, Ebner S, Blutke A, Klymiuk N, Flenkenthaler F, Wolf E, Arnold GJ, Fröhlich T (2020) Progressive proteome changes in the myocardium of a Pig Model for Duchenne muscular dystrophy. iScience 23:101516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Blundon M, Ganesan V, Redler B, Van PT, Minden JS (2019) Two-dimensional difference gel electrophoresis. Methods Mol Biol 1855:229–247

    Article  PubMed  CAS  Google Scholar 

  30. Partridge TA (2013) The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J 280:4177–4186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, Thomas PD (2021) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 49(D1):D394–D403

    Article  PubMed  CAS  Google Scholar 

  33. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612

    Article  PubMed  CAS  Google Scholar 

  34. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The. Innovations 2021:100141

    Google Scholar 

  35. Grantham J (2020) The molecular Chaperone CCT/TRiC: an essential component of Proteostasis and a potential modulator of protein aggregation. Front Genet 11:172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lin BL, Song T, Sadayappan S (2017) Myofilaments: movers and rulers of the sarcomere. Compr Physiol 7:675–692

    Article  PubMed  Google Scholar 

  37. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 7(D1):D590–D595

    Article  Google Scholar 

  39. Kanehisa M, Sato Y, Kawashima M (2022) KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 31:47–53

    Article  PubMed  CAS  Google Scholar 

  40. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  PubMed  CAS  Google Scholar 

  41. Wichmann C, Meier F, Virreira Winter S, Brunner AD, Cox J, Mann M (2019) MaxQuant.Live enables global targeting of more than 25,000 peptides. Mol Cell Proteomics 18:982–994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol Biol 1711:133–148

    Article  PubMed  CAS  Google Scholar 

  43. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD (2019) Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc 14:703–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Murphy S, Henry M, Meleady P, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K (2015) Simultaneous Pathoproteomic evaluation of the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv Mouse Model of Duchenne muscular dystrophy. Biology (Basel) 4:397–423

    CAS  Google Scholar 

  45. Zweyer M, Sabir H, Dowling P, Gargan S, Murphy S, Swandulla D, Ohlendieck K (2022) Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers. Histol Histopathol 37:101–116

    PubMed  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory has been supported by a project grant from the Kathleen Lonsdale Institute for Human Health Research, Maynooth University and equipment funding under the Research Infrastructure Call 2012 by Science Foundation Ireland (SFI-12/RI/2346/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Ohlendieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Murphy, S., Zweyer, M., Swandulla, D., Ohlendieck, K. (2023). Bioinformatic Analysis of the Subproteomic Profile of Cardiomyopathic Tissue. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 2596. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2831-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2831-7_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2830-0

  • Online ISBN: 978-1-0716-2831-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics