Skip to main content

HapCUT2: A Method for Phasing Genomes Using Experimental Sequence Data

  • Protocol
  • First Online:
Haplotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2590))

Abstract

Rapid advances in high-throughput DNA sequencing technologies have enabled variant discovery from whole-genome sequencing (WGS) datasets; however linking variants on a chromosome together into haplotypes, also known as haplotype phasing, remains difficult. Human genomes are diploid and haplotype phasing is crucial for the complete interpretation and analysis of genetic variation.

Hapcut2 (https://github.com/vibansal/HapCUT2) is an open-source software for phasing diploid genomes using sequence data generated using different sequencing technologies and experimental methods. In this article, we give an overview of the algorithm used by Hapcut2 and describe how to use Hapcut2 for haplotype phasing of individual genomes using different types of sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal V, Halpern AL, Axelrod N, Bafna V (2008) An MCMC algorithm for haplotype assembly from whole-genome sequence data. Genome Res 18(8):1336–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kitzman JO, Mackenzie AP, Adey A et al (2011) Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat Biotechnol 29(1):59–63. https://doi.org/10.1038/nbt.1740

    Article  CAS  PubMed  Google Scholar 

  3. Peters BA, Kermani BG, Sparks AB et al (2012) Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487(7406):190–195. https://doi.org/10.1038/nature11236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Snyder MW, Adey A, Kitzman JO et al (2015) Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet 16(6):344–358. https://doi.org/10.1038/nrg3903

    Article  CAS  PubMed  Google Scholar 

  5. Zheng GX, Lau BT, Schnall-Levin M et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311. https://doi.org/10.1038/nbt.3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Z, Pham L, Wu TC et al (2020) Ultralow-input single-tube linked-read library method enables short-read second-generation sequencing systems to routinely generate highly accurate and economical long-range sequencing information. Genome Res 30(6):898–909. https://doi.org/10.1101/gr.260380.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Selvaraj SR, Dixon J, Bansal V et al (2013) Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol 31(12):1111–1118. https://doi.org/10.1038/nbt.2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edge P, Bafna V, Bansal V (2017) HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res 27(5):801–812. 05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bansal V, Bafna V (2008) HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16):i153–i159

    Article  PubMed  Google Scholar 

  10. Kuleshov V (2014) Probabilistic single-individual haplotyping. Bioinformatics 30(17):i379–i385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patterson M, Marschall T, Pisanti N et al (2015) WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J Comput Biol 22(6):498–509. https://doi.org/10.1089/cmb.2014.0157

    Article  CAS  PubMed  Google Scholar 

  12. Levy S, Sutton G, Ng PC et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5(10):e254. https://doi.org/10.1371/journal.pbio.0050254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bansal, V. (2023). HapCUT2: A Method for Phasing Genomes Using Experimental Sequence Data. In: Peters, B.A., Drmanac, R. (eds) Haplotyping. Methods in Molecular Biology, vol 2590. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2819-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2819-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2818-8

  • Online ISBN: 978-1-0716-2819-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics