Skip to main content

Design and Synthesis of Ubiquitin-Based Chemical Tools with Unnatural Amino Acids for Selective Detection of Deubiquitinases

  • Protocol
  • First Online:
Deubiquitinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2591))

  • 760 Accesses

Abstract

Several chemical approaches have been applied to develop Ub-based substrates and probes selective toward one or a narrow subset of deubiquitinases (DUBs). Since DUBs are highly specific toward ubiquitin and exhibit low activity toward shorter peptides, it is challenging to design truly selective chemical tools to investigate one DUB in biological samples. Incorporating amino acids other than canonical LRG at the P4–P2 positions in the Ub improves DUB activity and selectivity toward Ub derivatives. Here, we describe the protocol for identifying selective peptide sequences using a hybrid combinatorial substrate library (HyCoSuL) approach that can be introduced in the C-terminal motif of Ub. Furthermore, we describe the synthesis protocol of Ub-based probes and substrates containing unnatural amino acids and the application of Ub-based probes to detect DUBs in cell lysates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  2. Mevissen TET, Komander D (2017) Mechanisms of Deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192

    Article  CAS  PubMed  Google Scholar 

  3. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  4. Dittmar G, Winklhofer KF (2019) Linear ubiquitin chains: cellular functions and strategies for detection and quantification. Front Chem 7:915

    Article  CAS  PubMed  Google Scholar 

  5. Clague MJ, Urbe S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 20(6):338–352

    Article  CAS  PubMed  Google Scholar 

  6. Gu Z, Shi W (2016) Manipulation of viral infection by deubiquitinating enzymes: new players in host-virus interactions. Future Microbiol 11:1435–1446

    Article  CAS  PubMed  Google Scholar 

  7. Harrigan JA et al (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17(1):57–78

    Article  CAS  PubMed  Google Scholar 

  8. Schauer NJ et al (2020) Advances in discovering Deubiquitinating enzyme (DUB) inhibitors. J Med Chem 63(6):2731–2750

    Article  CAS  PubMed  Google Scholar 

  9. Farshi P et al (2015) Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opin Ther Pat 25(10):1191–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fraile JM et al (2012) Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31(19):2373–2388

    Article  CAS  PubMed  Google Scholar 

  11. Fonovic M, Bogyo M (2008) Activity-based probes as a tool for functional proteomic analysis of proteases. Expert Rev Proteomics 5(5):721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563

    Article  CAS  PubMed  Google Scholar 

  13. Iphofer A et al (2012) Profiling ubiquitin linkage specificities of deubiquitinating enzymes with branched ubiquitin isopeptide probes. Chembiochem 13(10):1416–1420

    Article  PubMed  Google Scholar 

  14. McGouran JF et al (2013) Deubiquitinating enzyme specificity for ubiquitin chain topology profiled by di-ubiquitin activity probes. Chem Biol 20(12):1447–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flierman D et al (2016) Non-hydrolyzable Diubiquitin probes reveal linkage-specific reactivity of Deubiquitylating enzymes mediated by S2 pockets. Cell Chem Biol 23(4):472–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li G et al (2014) Activity-based diubiquitin probes for elucidating the linkage specificity of deubiquitinating enzymes. Chem Commun (Camb) 50(2):216–218

    Article  CAS  Google Scholar 

  17. Borodovsky A et al (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 9(10):1149–1159

    Article  CAS  PubMed  Google Scholar 

  18. Love KR et al (2009) Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery. ACS Chem Biol 4(4):275–287

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gjonaj L et al (2019) Development of a DUB-selective fluorogenic substrate. Chem Sci 10(44):10290–10296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gjonaj L et al (2019) USP7: combining tools towards selectivity. Chem Commun (Camb) 55(35):5075–5078

    Article  CAS  Google Scholar 

  21. Rut W et al (2020) Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes. Chem Sci 11(23):6058–6069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drag M et al (2008) Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). Biochem J 415(3):367–375

    Article  CAS  PubMed  Google Scholar 

  23. Poreba M et al (2014) Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates. Cell Death Differ 21(9):1482–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rut W et al (2017) Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease. Antivir Res 139:88–94

    Article  CAS  PubMed  Google Scholar 

  25. Rut W et al (2018) Selective substrates and activity-based probes for imaging of the human constitutive 20S proteasome in cells and blood samples. J Med Chem 61(12):5222–5234

    Article  CAS  PubMed  Google Scholar 

  26. Poreba M et al (2016) Counter selection substrate library strategy for developing specific protease substrates and probes. Cell Chem Biol 23(8):1023–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poreba M et al (2018) Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes. Chem Sci 9(8):2113–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vedrenne E et al (2005) Dramatic effect of boron-based Lewis acids in cross-metathesis reactions. Synlett 4:670–672

    Google Scholar 

  29. Maly DJ et al (2002) Expedient solid-phase synthesis of fluorogenic protease substrates using the 7-amino-4-carbamoylmethylcoumarin (ACC) fluorophore. J Org Chem 67(3):910–915

    Article  CAS  PubMed  Google Scholar 

  30. Poreba M et al (2014) Positional scanning substrate combinatorial library (PS-SCL) approach to define Caspase substrate specificity. Caspases, Paracaspases, and Metacaspases: Methods and Protocols 1133:41–59

    Article  CAS  Google Scholar 

  31. El Oualid F et al (2010) Chemical synthesis of ubiquitin, ubiquitin-based probes, and Diubiquitin. Angewandte Chemie-International Edition 49(52):10149–10153

    Article  PubMed  Google Scholar 

  32. Zheng JS et al (2013) Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat Protoc 8(12):2483–2495

    Article  CAS  PubMed  Google Scholar 

  33. Drag M et al (2008) Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). Biochem J 415:367–375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Center grant 2015/17/N/ST5/03072 (Preludium 9) in Poland (W.R.) and the “TEAM/2017-4/32” project, which is carried out within the TEAM program of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development Fund (M.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wioletta Rut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rut, W., Zmudzinski, M., Drag, M. (2023). Design and Synthesis of Ubiquitin-Based Chemical Tools with Unnatural Amino Acids for Selective Detection of Deubiquitinases. In: Maupin-Furlow, J., Edelmann, M.J. (eds) Deubiquitinases. Methods in Molecular Biology, vol 2591. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2803-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2803-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2802-7

  • Online ISBN: 978-1-0716-2803-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics