Skip to main content

Analysis of HDACi-Coupled Nanoparticles: Opportunities and Challenges

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Abstract

Systemic administration of histone deacetylase inhibitors (HDACi), like valproic acid (VPA), is often associated with rapid drug metabolization and untargeted tissue distribution. This requires high-dose application that can lead to unintended side effects. Hence, drug carrier systems such as nanoparticles (NPs) are developed to circumvent these disadvantages by enhancing serum half-life as well as organ specificity.

This chapter gives a summary of the biological characterization of HDACi-coupled NPs in vitro, including investigation of cellular uptake, biocompatibility, as well as intracellular drug release and activity. Suitable methods, opportunities, and challenges will be discussed to provide general guidelines for the analysis of HDACi drug carrier systems with a special focus on recently developed cellulose-based VPA-coupled NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li G, Tian Y, Zhu WG (2020) The roles of histone deacetylases and their inhibitors in cancer therapy. Front Cell Dev Biol 8:576946

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ciarlo E, Savva A, Roger T (2013) Epigenetics in sepsis: targeting histone deacetylases. Int J Antimicrob Agents 42(Suppl):S8–S12

    Article  CAS  PubMed  Google Scholar 

  3. Suliman BA, Xu D, Williams BR (2012) HDACi: molecular mechanisms and therapeutic implications in the innate immune system. Immunol Cell Biol 90:23–32

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigues DA, Pinheiro PSM, Sagrillo FS et al (2020) Histone deacetylases as targets for the treatment of neurodegenerative disorders: challenges and future opportunities. Med Res Rev 40:2177–2211

    Article  CAS  PubMed  Google Scholar 

  5. Cappellacci L, Perinelli DR, Maggi F et al (2020) Recent progress in histone deacetylase inhibitors as anticancer agents. Curr Med Chem 27:2449–2493

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6

    Google Scholar 

  7. Suraweera A, O’byrne KJ, Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol 8:92

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hennig D, Schubert S, Dargatz H et al (2014) Novel insights into appropriate encapsulation methods for bioactive compounds into polymers: a study with peptides and HDAC inhibitors. Macromol Biosci 14:69–80

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez-Fernandez A, Manchanda R, Mcgoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165:1628–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mout R, Moyano DF, Rana S et al (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Da Silva FLO, Marques MBF, Kato KC et al (2020) Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discovery 15:853–864

    Article  Google Scholar 

  12. Lindemann H, Kühne M, Grune C et al (2020) Polysaccharide nanoparticles bearing HDAC inhibitor as nontoxic nanocarrier for drug delivery. Macromol Biosci 20:e2000039

    Article  PubMed  Google Scholar 

  13. Kühne M, Lindemann H, Grune C et al (2021) Biocompatible sulfated valproic acid-coupled polysaccharide-based nanocarriers with HDAC inhibitory activity. J Control Release 329:717–730

    Article  PubMed  Google Scholar 

  14. Kühne M, Kretzer C, Lindemann H et al (2021) Biocompatible valproic acid-coupled nanoparticles attenuate lipopolysaccharide-induced inflammation. Int J Pharm 601:120567

    Article  PubMed  Google Scholar 

  15. Bernal-Chavez SA, Del Prado-Audelo ML, Caballero-Floran IH et al (2021) Insights into terminal sterilization processes of nanoparticles for biomedical applications. Molecules 26

    Google Scholar 

  16. Pawley J (2006) Handbook of biological confocal microscopy. Springer

    Book  Google Scholar 

  17. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    Article  CAS  PubMed  Google Scholar 

  18. Schermelleh L, Ferrand A, Huser T et al (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84

    Article  CAS  PubMed  Google Scholar 

  19. Reifarth M, Hoeppener S, Schubert US (2018) Uptake and intracellular fate of engineered nanoparticles in mammalian cells: capabilities and limitations of transmission electron microscopy-polymer-based nanoparticles. Adv Mater 30

    Google Scholar 

  20. Macia E, Ehrlich M, Massol R et al (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    Article  CAS  PubMed  Google Scholar 

  21. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  23. Medyukhina A, Figge MT (2020) DeconvTest: simulation framework for quantifying errors and selecting optimal parameters of image deconvolution. J Biophotonics 13:e201960079

    Article  PubMed  Google Scholar 

  24. Fengjiao M, Sedzicki J, Hoeppener S et al (2021) Guided- deconvolution in correlative light and electron microscopy. ELMI

    Google Scholar 

  25. Bahring F, Schlenk F, Wotschadlo J et al (2013) Suitability of viability assays for testing biological effects of coated superparamagnetic nanoparticles. IEEE Trans Magn 49:383–388

    Article  Google Scholar 

  26. Schlenk F, Werner S, Rabel M et al (2017) Comprehensive analysis of the in vitro and ex ovo hemocompatibility of surface engineered iron oxide nanoparticles for biomedical applications. Arch Toxicol 91:3271–3286

    Article  CAS  PubMed  Google Scholar 

  27. Mahmoudi M, Hofmann H, Rothen-Rutishauser B et al (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  CAS  PubMed  Google Scholar 

  28. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. In: Biotechnology annual review. Elsevier, pp 127–152

    Chapter  Google Scholar 

  29. Anonymous (2017) ISO 10993-4: biological evaluation of medical devices–Part 4: Selection of tests for interactions with blood. In: Standardization IOf (ed)

    Google Scholar 

  30. Bauer M, Lautenschlaeger C, Kempe K et al (2012) Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol Biosci 12:986–998

    Article  CAS  PubMed  Google Scholar 

  31. Cardoso AV, Pereira MH, Marcondes GDA et al (2007) Microplate reader analysis of triatomine saliva effect on erythrocyte aggregation. Mater Res 10:31–36

    Article  CAS  Google Scholar 

  32. Joris F, Manshian BB, Peynshaert K et al (2013) Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev 42:8339–8359

    Article  CAS  PubMed  Google Scholar 

  33. Dunn BE (1974) Technique for shell-less culture of the 72-hour avian embryo. Poult Sci 53:409–412

    Article  CAS  PubMed  Google Scholar 

  34. Rosenbruch M (1994) Early stages of the incubated chicken egg as a model in experimental biology and medicine. ALTEX-Altern Anim Exp 11:199–206. (Article in German)

    Google Scholar 

  35. Zheng FF, Xiong WW, Sun SS et al (2019) Recent advances in drug release monitoring. Nanophotonics-Berlin 8:391–413

    Article  CAS  Google Scholar 

  36. Göttlicher M, Minucci S, Zhu P et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hauser C, Schuettengruber B, Bartl S et al (2002) Activation of the mouse histone deacetylase 1 gene by cooperative histone phosphorylation and acetylation. Mol Cell Biol 22:7820–7830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Krämer OH, Zhu P, Ostendorff HP et al (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22:3411–3420

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mauri E, Papa S, Masi M et al (2017) Novel functionalization strategies to improve drug delivery from polymers. Expert Opin Drug Deliv 14:1305–1313

    Article  CAS  PubMed  Google Scholar 

  40. Tu B, Zhang M, Liu T et al (2020) Nanotechnology-based histone deacetylase inhibitors for cancer therapy. Front Cell Dev Biol 8:400

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bazak R, Houri M, El Achy S et al (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784

    Article  CAS  PubMed  Google Scholar 

  42. Luo S, Zhang E, Su Y et al (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:7127–7138

    Article  CAS  PubMed  Google Scholar 

  43. Press AT, Traeger A, Pietsch C et al (2014) Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles. Nat Commun 5:5565

    Article  CAS  PubMed  Google Scholar 

  44. Edmondson R, Broglie JJ, Adcock AF et al (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  CAS  PubMed  Google Scholar 

  46. Ravi M, Paramesh V, Kaviya SR et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26

    Article  CAS  PubMed  Google Scholar 

  47. Koledova Z (2017) 3D cell culture: an introduction. Methods Mol Biol 1612:1–11

    Article  CAS  PubMed  Google Scholar 

  48. Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19:65–81

    Article  CAS  PubMed  Google Scholar 

  49. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Collaborative Research Center SFB 1278 PolyTarget (Project-ID 316213987, projects A02, C02, Z01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Heinzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kühne, M. et al. (2023). Analysis of HDACi-Coupled Nanoparticles: Opportunities and Challenges. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2788-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2787-7

  • Online ISBN: 978-1-0716-2788-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics