Skip to main content

Proximity-Dependent In Vivo Biotin Labeling for Interactome Mapping in Marchantia polymorpha

  • Protocol
  • First Online:
Plant Proteostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2581))

Abstract

Weak or transient protein-protein interactions (PPIs) are involved in a manifold of cellular processes in all living organisms, including plants. However, many of these interactions may remain undiscovered by co-immunoprecipitation (Co-IP) approaches due to their low binding affinities or transitory nature. Enzyme-mediated proximity-dependent in vivo biotin labeling can be a powerful strategy to efficiently capture weak and transient PPIs and has been successfully applied in different model angiosperm species. Here, we provide an optimized and robust protocol for biotin ligase-mediated proximity labeling for interactome mapping in the model liverwort Marchantia polymorpha.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kubota A, Ishizaki K, Hosaka M, Kohchi T (2013) Efficient agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77(1):167–172. https://doi.org/10.1271/bbb.120700

    Article  CAS  PubMed  Google Scholar 

  2. Diop SI, Subotic O, Giraldo-Fonseca A, Waller M, Kirbis A, Neubauer A, Potente G, Murray-Watson R, Boskovic F, Bont Z, Hock Z, Payton AC, Duijsings D, Pirovano W, Conti E, Grossniklaus U, McDaniel SF, Szovenyi P (2020) A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. Plant J 101(6):1378–1396. https://doi.org/10.1111/tpj.14602

    Article  CAS  PubMed  Google Scholar 

  3. Montgomery SA, Tanizawa Y, Galik B, Wang N, Ito T, Mochizuki T, Akimcheva S, Bowman JL, Cognat V, Marechal-Drouard L, Ekker H, Hong SF, Kohchi T, Lin SS, Liu LD, Nakamura Y, Valeeva LR, Shakirov EV, Shippen DE, Wei WL, Yagura M, Yamaoka S, Yamato KT, Liu C, Berger F (2020) Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr Biol 30(4):573–588 e577. https://doi.org/10.1016/j.cub.2019.12.015

  4. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue SI, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rovekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2):287–304 e215. https://doi.org/10.1016/j.cell.2017.09.030

  5. Shimamura M (2016) Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol 57(2):230–256. https://doi.org/10.1093/pcp/pcv192

    Article  CAS  PubMed  Google Scholar 

  6. Martell JD, Deerinck TJ, Lam SS, Ellisman MH, Ting AY (2017) Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat Protoc 12(9):1792–1816. https://doi.org/10.1038/nprot.2017.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339(6125):1328–1331. https://doi.org/10.1126/science.1230593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu G, Nagala M, Crocker PR (2017) Identification of lectin counter-receptors on cell membranes by proximity labeling. Glycobiology 27(9):800–805. https://doi.org/10.1093/glycob/cwx063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36(9):880–887. https://doi.org/10.1038/nbt.4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao X, Bitsch S, Kubitz L, Schmitt K, Deweid L, Roehrig A, Barazzone EC, Valerius O, Kolmar H (2021) Béthune J. https://doi.org/10.1101/2021.06.16.448656

  11. Kido K, Yamanaka S, Nakano S, Motani K, Shinohara S, Nozawa A, Kosako H, Ito S, Sawasaki T (2020) AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions. elife 9. https://doi.org/10.7554/eLife.54983

  12. Zhuang M, Guan S, Wang H, Burlingame AL, Wells JA (2013) Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Mol Cell 49(2):273–282. https://doi.org/10.1016/j.molcel.2012.10.022

    Article  CAS  PubMed  Google Scholar 

  13. Chu Y, Dong X, Kang Y, Liu J, Zhang T, Yang C, Wang Z, Shen W, Huo H, Zhuang M, Lu J, Liu Y (2020) The chaperone BAG6 regulates cellular homeostasis between autophagy and apoptosis by holding LC3B. iScience 23(11):101708. https://doi.org/10.1016/j.isci.2020.101708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hill ZB, Pollock SB, Zhuang M, Wells JA (2016) Direct proximity tagging of small molecule protein targets using an engineered NEDD8 ligase. J Am Chem Soc 138(40):13123–13126. https://doi.org/10.1021/jacs.6b06828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Q, Zheng J, Sun W, Huo Y, Zhang L, Hao P, Wang H, Zhuang M (2018) A proximity-tagging system to identify membrane protein-protein interactions. Nat Methods 15(9):715–722. https://doi.org/10.1038/s41592-018-0100-5

    Article  CAS  PubMed  Google Scholar 

  16. Mair A, Xu SL, Branon TC, Ting AY, Bergmann DC (2019) Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. elife 8. https://doi.org/10.7554/eLife.47864

  17. Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y, Zheng W, Huang PJ, Branon TC, Ting AY, Walley JW, Dinesh-Kumar SP (2019) TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity. Nat Commun 10(1):3252. https://doi.org/10.1038/s41467-019-11202-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arora D, Abel NB, Liu C, Van Damme P, Yperman K, Eeckhout D, Vu LD, Wang J, Tornkvist A, Impens F, Korbei B, Van Leene J, Goossens A, De Jaeger G, Ott T, Moschou PN, Van Damme D (2020) Establishment of proximity-dependent Biotinylation approaches in different plant model systems. Plant Cell 32(11):3388–3407. https://doi.org/10.1105/tpc.20.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi-Rhee E, Schulman H, Cronan JE (2004) Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci 13(11):3043–3050. https://doi.org/10.1110/ps.04911804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cronan JE (2005) Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase. J Nutr Biochem 16(7):416–418. https://doi.org/10.1016/j.jnutbio.2005.03.017

    Article  CAS  PubMed  Google Scholar 

  21. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196(6):801–810. https://doi.org/10.1083/jcb.201112098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conlan BF, Stoll T, Gorman JJ, Saur IM, Rathjen JP (2018) Development of a rapid in planta BioID system as a probe for plasma membrane associated immunity proteins. Front. Plant Sci 9

    Google Scholar 

  23. Melkonian K, Stolze SC, Harzen A, Nakagami H (2022) miniTurbo-based interactomics of two plasma membrane-localized SNARE proteins in Marchantia polymorpha. New Phytol 235(2):786–800. https://doi.org/10.1111/nph.18151

  24. Rappsilber J, Yshihama J, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Google Scholar 

  25. Nakagami H (2014) StageTip-based HAMMOC, an efficient and inexpensive phosphopeptide enrichment method for plant shotgun phosphoproteomics. Methods Mol Biol 1072:595–607. https://doi.org/10.1007/978-1-62703-631-3_40

    Article  CAS  PubMed  Google Scholar 

  26. Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189(4):739–754. https://doi.org/10.1083/jcb.200911091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Rozina Kardakaris for editing the manuscript. This project was supported by the Max Planck Society and was carried out in the framework of MAdLand (http://madland.science, Deutsche Forschungsgemeinschaft (DFG) priority program 2237). H.N. is grateful for the funding by the DFG (NA 946/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Nakagami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Melkonian, K., Stolze, S.C., Harzen, A., Nakagami, H. (2023). Proximity-Dependent In Vivo Biotin Labeling for Interactome Mapping in Marchantia polymorpha. In: Lois, L.M., Trujillo, M. (eds) Plant Proteostasis. Methods in Molecular Biology, vol 2581. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2784-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2784-6_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2783-9

  • Online ISBN: 978-1-0716-2784-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics