Skip to main content

Use of Glycine to Augment Exon Skipping and Cell Therapies for Duchenne Muscular Dystrophy

  • Protocol
  • First Online:
Muscular Dystrophy Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2587))

Abstract

Antisense oligonucleotide (AO)-based exon-skipping and cell therapies are the main therapeutic approaches for Duchenne muscular dystrophy (DMD). Insufficient systemic delivery leading to low therapeutic efficacy limits the former; low transplantation efficiency hampers the latter. Here we describe how glycine can address these issues by augmenting satellite proliferation and muscle regeneration, resulting in enhanced AO uptake in regenerating myofibers and cell transplantation efficiency in dystrophic mice. The dual functionality of glycine demonstrated in AO-based exon-skipping and cell therapies presents a simple and efficient method to augment AO potency and cell transplantation efficacy in DMD and other muscle diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaspar RW, Allen HD, Ray WC et al (2009) Analysis of dystrophin deletion mutations predicts age of cardiomyopathy onset in Becker muscular dystrophy. Circ Cardiovasc Genet 2(6):544–551. https://doi.org/10.1161/CIRCGENETICS.109.867242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheikh O, Yokota T (2021) Restoring protein expression in neuromuscular conditions: a review assessing the current state of exon skipping/inclusion and gene therapies for Duchenne muscular dystrophy and spinal muscular atrophy. BioDrugs. https://doi.org/10.1007/s40259-021-00486-7

  3. Mendell JR, Rodino-Klapac LR, Sahenk Z et al (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74(5):637–647. https://doi.org/10.1002/ana.23982

    Article  CAS  PubMed  Google Scholar 

  4. Goemans NM, Tulinius M, van den Akker JT et al (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364(16):1513–1522. https://doi.org/10.1056/NEJMoa1011367

    Article  CAS  PubMed  Google Scholar 

  5. Biressi S, Filareto A, Rando TA (2020) Stem cell therapy for muscular dystrophies. J Clin Invest 130(11):5652–5664. https://doi.org/10.1172/JCI142031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yin H, Lu Q, Wood M (2008) Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther 16(1):38–45. https://doi.org/10.1038/sj.mt.6300329

    Article  CAS  PubMed  Google Scholar 

  7. Yin H, Moulton HM, Betts C et al (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 18(22):4405–4414. https://doi.org/10.1093/hmg/ddp395

    Article  CAS  PubMed  Google Scholar 

  8. Yin H, Moulton HM, Seow Y et al (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17(24):3909–3918. https://doi.org/10.1093/hmg/ddn293

    Article  CAS  PubMed  Google Scholar 

  9. Yin H, Saleh AF, Betts C et al (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol Ther 19(7):1295–1303. https://doi.org/10.1038/mt.2011.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao X, Zhao J, Han G et al (2014) Effective dystrophin restoration by a novel muscle-homing peptide-morpholino conjugate in dystrophin-deficient mdx mice. Mol Ther 22(7):1333–1341. https://doi.org/10.1038/mt.2014.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hammond SM, Hazell G, Shabanpoor F et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113(39):10962–10967. https://doi.org/10.1073/pnas.1605731113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Said Hassane F, Saleh AF, Abes R et al (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726. https://doi.org/10.1007/s00018-009-0186-0

    Article  CAS  PubMed  Google Scholar 

  13. Biswas S (2021) Polymeric micelles as drug delivery systems in cancer: challenges and opportunities. Nanomedicine (London). https://doi.org/10.2217/nnm-2021-0081

  14. Yang H, Liu R, Xu Y et al (2021) Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett 13(1):35. https://doi.org/10.1007/s40820-020-00561-8

    Article  CAS  Google Scholar 

  15. Kim Y, Tewari M, Pajerowski JD et al (2009) Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release 134(2):132–140. https://doi.org/10.1016/j.jconrel.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  16. Rimessi P, Sabatelli P, Fabris M et al (2009) Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse. Mol Ther 17(5):820–827. https://doi.org/10.1038/mt.2009.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sirsi SR, Schray RC, Wheatley MA et al (2009) Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides. J Nanobiotechnol 7:1. https://doi.org/10.1186/1477-3155-7-1

    Article  CAS  Google Scholar 

  18. Williams JH, Schray RC, Sirsi SR et al (2008) Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice. BMC Biotechnol 8:35. https://doi.org/10.1186/1472-6750-8-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao X, Ran N, Dong X et al (2018) Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med 10(444). https://doi.org/10.1126/scitranslmed.aat0195

  20. Han G, Gu B, Lin C et al (2019) Hexose potentiates peptide-conjugated Morpholino oligomer efficacy in cardiac muscles of dystrophic mice in an age-dependent manner. Mol Ther Nucl Acids 18:341–350. https://doi.org/10.1016/j.omtn.2019.09.012

    Article  CAS  Google Scholar 

  21. Han G, Gu B, Cao L et al (2016) Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice. Nat Commun 7:10981. https://doi.org/10.1038/ncomms10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin C, Han G, Ning H et al (2020) Glycine enhances satellite cell proliferation, cell transplantation, and oligonucleotide efficacy in dystrophic muscle. Mol Ther 28(5):1339–1358. https://doi.org/10.1016/j.ymthe.2020.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Han or HaiFang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Han, G., Lin, C., Yin, H. (2023). Use of Glycine to Augment Exon Skipping and Cell Therapies for Duchenne Muscular Dystrophy. In: Maruyama, R., Yokota, T. (eds) Muscular Dystrophy Therapeutics. Methods in Molecular Biology, vol 2587. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2772-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2772-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2771-6

  • Online ISBN: 978-1-0716-2772-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics