Skip to main content

How to Generate a Vascular-Labelled Transgenic Zebrafish Model to Study Tumor Angiogenesis and Extravasation

  • Protocol
  • First Online:
Tumor Angiogenesis Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2572))

  • 817 Accesses

Abstract

The use of transgenic animals carrying exogenous DNA integrated in their genome is a routine in modern-day laboratories. Nowadays, the zebrafish system represents the most useful tool for transgenesis studies mainly due to easy accessibility and manipulation of the eggs, which are produced in high numbersĀ and overĀ a relatively short generation time. The zebrafish transgenic technology is very straightforward when coupled with angiogenesis studies allowing easy in vivo observation of the vertebrate embryonic vasculature. Here, we describe the most common technique to generate vascular-labelled transgenic zebrafish embryos and their applications to study tumor angiogenesis and visualize tumor extravasation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reischauer S, Stone OA, Villasenor A et al (2016) Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature 535(7611):294ā€“298. https://doi.org/10.1038/nature18614

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Pak B, Schmitt CE, Choi W et al (2020) Analyses of avascular mutants reveal unique transcriptomic signature of non-conventional endothelial cells. Front Cell Dev Biol 8:589717. https://doi.org/10.3389/fcell.2020.589717

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Covassin LD, Villefranc JA, Kacergis MC et al (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci U S A 103(17):6554ā€“6559. https://doi.org/10.1073/pnas.0506886103

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Jiang Z, Carlantoni C, Allanki S, Ebersberger I et al (2020) Tek (Tie2) is not required for cardiovascular development in zebrafish. Development 147(19):dev193029. https://doi.org/10.1242/dev.193029

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163ā€“1177. https://doi.org/10.1083/jcb.200302047

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Hellstrƶm M, Phng LK, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776ā€“780. https://doi.org/10.1038/nature05571

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781ā€“784. https://doi.org/10.1038/nature05577

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Schuermann A, Helker CS, Herzog W (2015) Metallothionein 2 regulates endothelial cell migration through transcriptional regulation of vegfc expression. Angiogenesis 18(4):463ā€“475. https://doi.org/10.1007/s10456-015-9473-6

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Koenig AL, Baltrunaite K, Bower NI et al (2016) Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Dev Biol 411(1):115ā€“127. https://doi.org/10.1016/j.ydbio.2016.01.002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Ando K, Fukuhara S, Izumi N et al (2016) Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development 143(8):1328ā€“1339. https://doi.org/10.1242/dev.132654

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Weijts B, Gutierrez E, Saikin SK et al (2018) Blood flow-induced notch activation and endothelial migration enable vascular remodeling in zebrafish embryos. Nat Commun 9(1):5314. https://doi.org/10.1038/s41467-018-07732-7

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Bowley G, Kugler E, Wilkinson R, et al (2021) Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol. Advance online publication. https://doi.org/10.1111/bph.15473

  13. Santoro MM (2014) Antiangiogenic cancer drug using the zebrafish model. Arter Thromb Vasc Biol 34(9):1846ā€“1853. https://doi.org/10.1161/ATVBAHA.114.303221

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498ā€“503. https://doi.org/10.1038/nature12111

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Chen X, Gays D, Milia C et al (2017) Cilia control vascular mural cell recruitment in vertebrates. Cell Rep 18(4):1033ā€“1047. https://doi.org/10.1016/j.celrep.2016.12.044

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Okuda KS, Hogan BM (2020) Endothelial cell dynamics in vascular development: insights from live-imaging in zebrafish. Front Physiol 11:842. https://doi.org/10.3389/fphys.2020.00842

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2(11):2918ā€“2923. https://doi.org/10.1038/nprot.2007.412

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Baltrunaite K, Craig MP, Palencia Desai S et al (2017) ETS transcription factors Etv2 and Fli1b are required for tumor angiogenesis. Angiogenesis 20(3):307ā€“323. https://doi.org/10.1007/s10456-017-9539-8

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Zhao C, Wang X, Zhao Y et al (2011) A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS One 6(7):e21768. https://doi.org/10.1371/journal.pone.0021768

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Pascoal S, Grissenberger S, Scheuringer E et al (2021) Using zebrafish larvae as a xenotransplantation model to study Ewing sarcoma. Methods Mol Biol (Clifton, NJ) 2226:243ā€“255. https://doi.org/10.1007/978-1-0716-1020-6_19

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Konantz M, Balci TB, Hartwig UF et al (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124ā€“137. https://doi.org/10.1111/j.1749-6632.2012.06575.x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. Britto DD, Wyroba B, Chen W et al (2018) Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model. Dis Models Mech 11(12):dmm035998. https://doi.org/10.1242/dmm.035998

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Follain G, Osmani N, Azevedo AS et al (2018) Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell 45(1):33ā€“52.e12. https://doi.org/10.1016/j.devcel.2018.02.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Hyenne V, Ghoroghi S, Collot M et al (2019) Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev Cell 48(4):554ā€“572.e7. https://doi.org/10.1016/j.devcel.2019.01.014

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Camillo C, Facchinello N, Villari G et al (2021) LPHN2 inhibits vascular permeability by differential control of endothelial cell adhesion. J Cell Biol 220(11):e202006033. https://doi.org/10.1083/jcb.202006033

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Suster ML, Kikuta H, Urasaki A et al (2009) Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol (Clifton, NJ) 561:41ā€“63. https://doi.org/10.1007/978-1-60327-019-9_3

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Huang P, Xiao A, Tong X et al (2016) Targeted mutagenesis in zebrafish by TALENs. Methods Mol Biol (Clifton, NJ) 1338:191ā€“206. https://doi.org/10.1007/978-1-4939-2932-0_15

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9(5):e98186. https://doi.org/10.1371/journal.pone.0098186

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Ablain J, Durand EM, Yang S et al (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 32(6):756ā€“764. https://doi.org/10.1016/j.devcel.2015.01.032

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Nicoli S, Ribatti D, Cotelli F et al (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927ā€“2931. https://doi.org/10.1158/0008-5472.CAN-06-4268

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Santoro MM (2012) Modeling tumor angiogenesis in zebrafish. In Tumor angiogenesis, Sophia Ran, IntechOpen. https://doi.org/10.5772/26568. Available from: https://www.intechopen.com/chapters/28604

  32. Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(Pt 13):2332ā€“2341. https://doi.org/10.1242/jcs.069443

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307ā€“318. https://doi.org/10.1006/dbio.2002.0711

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Gays D, Hess C, Camporeale A et al (2017) An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development 144(3):464ā€“478. https://doi.org/10.1242/dev.133926

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088ā€“3099. https://doi.org/10.1002/dvdy.21343

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Villefranc JA, Amigo J, Lawson ND (2007) Gateway compatible vectors for analysis of gene function in the zebrafish. Dev Dyn 236(11):3077ā€“3087. https://doi.org/10.1002/dvdy.21354

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Chen X, Gays D, Santoro MM (2016) Transgenic zebrafish. Methods Mol Biol (Clifton, NJ) 1464:107ā€“114. https://doi.org/10.1007/978-1-4939-3999-2_10

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Collot M, Ashokkumar P, Anton H et al (2019) MemBright: a family of fluorescent membrane probes for advanced cellular imaging and neuroscience. Cell Chem Biol 26(4):600ā€“614.e7. https://doi.org/10.1016/j.chembiol.2019.01.009

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo M. Santoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oberkersch, R.E., Lidonnici, J., Santoro, M.M. (2023). How to Generate a Vascular-Labelled Transgenic Zebrafish Model to Study Tumor Angiogenesis and Extravasation. In: Ribatti, D. (eds) Tumor Angiogenesis Assays. Methods in Molecular Biology, vol 2572. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2703-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2703-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2702-0

  • Online ISBN: 978-1-0716-2703-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics