Skip to main content

Isothermal Titration Calorimetry Analysis of a Cooperative Riboswitch Using an Interdependent-Sites Binding Model

  • Protocol
  • First Online:
RNA Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2568))

Abstract

Isothermal titration calorimetry (ITC) is a powerful biophysical tool to characterize energetic profiles of biomacromolecular interactions without any alteration of the underlying chemical structures. In this protocol, we describe procedures for performing, analyzing, and interpreting ITC data obtained from a cooperative riboswitch–ligand interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutta D, Wedekind JE (2020) Nucleobase mutants of a bacterial preQ1-II riboswitch that uncouple metabolite sensing from gene regulation. J Biol Chem 295(9):2555–2567

    Google Scholar 

  2. Liberman JA, Bogue JT, Jenkins JL, Salim M, Wedekind JE (2014) ITC analysis of ligand binding to preQ1 riboswitches. Methods Enzymol 549:435–450

    Google Scholar 

  3. Schroeder GM, Dutta D, Cavender CE, Jenkins JL, Pritchett EM, Baker CD, Ashton JM, Mathews DH, Wedekind JE (2020) Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation. Nucleic Acids Res 48(14):1846–1864

    Google Scholar 

  4. Chen H, Egger M, Xu X, Flemmich L, Krasheninina O, Sun A, Micura R, Ren A (2020) Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding. Nucleic Acids Res 48(21):12394–12406

    Article  CAS  Google Scholar 

  5. Huang L, Serganov A, Patel DJ (2010) Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol Cell 40(5):774–786

    Article  CAS  Google Scholar 

  6. Ren A, Patel DJ (2014) c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat Chem Biol 10(9):780–786

    Article  CAS  Google Scholar 

  7. Trausch JJ, Batey RT (2018) A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. Chem Biol 21(2):205–216

    Article  Google Scholar 

  8. Breaker RR (2018) Riboswitches and translation control. Cold Spring Harb Perspect Biol 10:a032797

    Article  CAS  Google Scholar 

  9. McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR (2017) Riboswitch diversity and distribution. RNA 23(7):995–1011

    Article  CAS  Google Scholar 

  10. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9(9):1043–1049

    Article  CAS  Google Scholar 

  11. Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24(12):1558–1564

    Article  CAS  Google Scholar 

  12. Trausch JJ, Ceres P, Reyes FE, Batey RT (2011) The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19(10):1413–1423

    Article  CAS  Google Scholar 

  13. Gao A, Serganov A (2014) Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10(9):787–792

    Google Scholar 

  14. Schroeder GM, Cavender CE, Blau ME, Jenkins JL, Mathews DH, Wedekind JE (2022) A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control. Nat Commun. 13(1): 199

    Google Scholar 

  15. McCown PJ, Liang JJ, Weinberg Z, Breaker RR (2014) Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes. Chem Biol 21(7):880–889

    Google Scholar 

  16. Roth A, Winkler WC, Regulski EE, Lee BW, Lim J, Jona I, Barrick JE, Ritwik A, Kim JN, Welz R, Iwata-Reuyl D, Breaker RR (2007) A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 14(4):308–317

    Google Scholar 

  17. Velazquez-Campoy A, Leavitt E, Freire SF (2004) Characterization of protein-protein interactions by isothermal titration calorimetry. Methods Mol Biol 261:35–54

    CAS  PubMed  Google Scholar 

  18. Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62(18):950–959

    Article  Google Scholar 

  19. Brown A (2009) Analysis of cooperativity by isothermal titration calorimetry. Int J Mol Sci 10(8):3457–3477

    Article  CAS  Google Scholar 

  20. Vander Meulen KA, Butcher SE (2012) Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Res 40(5):2140–2151

    Article  CAS  Google Scholar 

  21. Liberman JA, Suddala KC, Aytenfisu A, Chan D, Belashov IA, Salim M, Mathews DH, Spitale RC, Walter NG, Wedekind JE (2015) Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proc Natl Acad Sci USA 112(27):E3485–E3494

    Google Scholar 

  22. Liberman JA, Salim M, Krucinska J, Wedekind JE (2013) Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Nat Chem Biol 9(6):353–355

    Google Scholar 

  23. Chavali SS, Mali SM, Jenkins JL, Fasan R, Wedekind JE (2020) Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors. J Biol Chem 295(49):16470–16486

    Article  CAS  Google Scholar 

  24. Belashov IA, Crawford DW, Cavender CE, Dai P, Beardslee PC, Mathews DH, Pentelute BL, McNaughton BR, Wedekind JE (2018) Structure of HIV TAR in complex with a lab-evolved RRM provides insight into duplex RNA recognition and synthesis of a constrained peptide that impairs transcription. Nucleic Acids Res 46(130):6401–6415

    Article  CAS  Google Scholar 

  25. Chavali SS, Mali SM, Bonn R, Saseendran Anitha A, Bennett RP, Smith HC, Fasan R, Wedekind JE (2021) Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells. J Biol Chem 297(6):101390

    Article  CAS  Google Scholar 

  26. Freire E, Schön A, Velazquez-Campoy A (2009) Chapter 5 isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol 455:127–155

    Article  CAS  Google Scholar 

  27. Duvvuri H, Wheeler LC, Harms MJ (2018) pytc: Open-source python software for global analyses of isothermal titration calorimetry data. Biochemistry 57(18):2578–2583

    Article  CAS  Google Scholar 

  28. Herrera I, Winnik MA (2016) Differential binding models for direct and reverse isothermal titration calorimetry. J Phys Chem B 120(9):2077–2086

    Article  CAS  Google Scholar 

  29. Herrera I, Winnik MA (2013) Differential binding models for isothermal titration calorimetry: moving beyond the Wiseman isotherm. J Phys Chem B 117(29):8659–8672

    Article  CAS  Google Scholar 

  30. Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277(2):260–266

    Article  CAS  Google Scholar 

  31. Branch MA, Coleman TF, Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM. J Sci Comput 21(1):1–23

    Google Scholar 

  32. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Vijaykumar A, Bardelli AP, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggström C, Fitzgerald C, Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, Ingold G-L, Allen GE, Lee GR, Audren H, Probst I, Dietrich JP, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel TJ, Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO, Vázquez-Baeza Y, SciPy C (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272

    Article  CAS  Google Scholar 

  33. Williams PM (1995) Bayesian regularization and pruning using a laplace prior. Neural Comput 7(1):117–143

    Article  Google Scholar 

  34. Wu CFJ (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 14(4):1261–1295

    Google Scholar 

  35. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825):357–362

    Article  CAS  Google Scholar 

  36. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7(4):499–512

    Article  CAS  Google Scholar 

  37. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179(1):131–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants GM132185 to D.H.M and GM063162 to J.E.W. G.M.S. was supported by training grant GM118283, and C.E.C was supported by training grant AI049815 to J.E.W. and an Elon Huntington Hooker graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David H. Mathews or Joseph E. Wedekind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cavender, C.E., Schroeder, G.M., Mathews, D.H., Wedekind, J.E. (2023). Isothermal Titration Calorimetry Analysis of a Cooperative Riboswitch Using an Interdependent-Sites Binding Model. In: Ding, J., Stagno, J.R., Wang, YX. (eds) RNA Structure and Dynamics. Methods in Molecular Biology, vol 2568. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2687-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2687-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2686-3

  • Online ISBN: 978-1-0716-2687-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics