Skip to main content

X-Ray Crystallography to Study Conformational Changes in a TPP Riboswitch

  • Protocol
  • First Online:
RNA Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2568))

  • 1149 Accesses

Abstract

Conformational rearrangements are key to the function of riboswitches. These regulatory mRNA regions specifically bind to cellular metabolites using evolutionarily conserved sensing domains and modulate gene expression via adjacent downstream expression platforms, which carry gene expression signals. The regulation is achieved through the ligand-dependent formation of two alternative and mutually exclusive conformations involving the same RNA region. While X-ray crystallography cannot visualize dynamics of such dramatic conformational rearrangements, this method is pivotal to understand RNA–ligand interaction that stabilize the sensing domain and drive folding of the expression platform. X-ray crystallography can reveal local changes in RNA necessary for discriminating cognate and noncognate ligands. This chapter describes preparation of thiamine pyrophosphate riboswitch RNAs and its crystallization with different ligands, resulting in structures with local conformational changes in RNA. These structures can help to derive information on the dynamics of the RNA essential for specific binding to small molecules, with potential for using this information for developing designer riboswitch–ligand systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  CAS  PubMed  Google Scholar 

  3. Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17

    Article  CAS  PubMed  Google Scholar 

  4. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    Article  CAS  PubMed  Google Scholar 

  5. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richards J, Belasco JG (2021) Widespread protection of RNA cleavage sites by a riboswitch aptamer that folds as a compact obstacle to scanning by RNase E. Mol Cell 81(127–138):e124

    Google Scholar 

  7. Peselis A, Gao A, Serganov A (2015) Cooperativity, allostery and synergism in ligand binding to riboswitches. Biochimie 117:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Panchapakesan SSS, Breaker RR (2021) The case of the missing allosteric ribozymes. Nat Chem Biol 17(4):375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Serganov A, Patel DJ (2012) Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys 41:343–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baker JL, Sudarsan N, Weinberg Z et al (2012) Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233–235

    Article  CAS  PubMed  Google Scholar 

  11. Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043

    Article  CAS  PubMed  Google Scholar 

  12. Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24:1558–1564

    Article  CAS  PubMed  Google Scholar 

  13. Blount KF, Megyola C, Plummer M et al (2015) Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother 59:5736–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blount KF, Wang JX, Lim J et al (2007) Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 3:44–49

    Article  CAS  PubMed  Google Scholar 

  15. Serganov A, Huang L, Patel DJ (2008) Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455:1263–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serganov A, Huang L, Patel DJ (2009) Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458:233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mulhbacher J, Brouillette E, Allard M et al (2010) Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 6:e1000865

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ster C, Allard M, Boulanger S et al (2013) Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog. J Dairy Sci 96:1000–1008

    Article  CAS  PubMed  Google Scholar 

  19. Yan LH, Le Roux A, Boyapelly K et al (2018) Purine analogs targeting the guanine riboswitch as potential antibiotics against Clostridioides difficile. Eur J Med Chem 143:755–768

    Article  CAS  PubMed  Google Scholar 

  20. Pedrolli DB, Matern A, Wang J et al (2012) A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic Acids Res 40:8662–8673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee ER, Blount KF, Breaker RR (2009) Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 6:187–194

    Article  CAS  PubMed  Google Scholar 

  22. Sudarsan N, Cohen-Chalamish S, Nakamura S et al (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 12:1325–1335

    Article  CAS  PubMed  Google Scholar 

  23. Howe JA, Wang H, Fischmann TO et al (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526:672–677

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Mann PA, Xiao L et al (2017) Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem Biol 24:576–588. e576

    Article  CAS  PubMed  Google Scholar 

  25. Warner KD, Hajdin CE, Weeks KM (2018) Principles for targeting RNA with drug-like small molecules. Nat Rev Drug Discov 17:547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Connelly CM, Moon MH, Schneekloth JS Jr (2016) The emerging role of RNA as a therapeutic target for small molecules. Cell Chem Biol 23:1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    Article  CAS  PubMed  Google Scholar 

  28. Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yadav S, Swati D, Chandrasekharan H (2015) Thiamine pyrophosphate riboswitch in some representative plant species: a bioinformatics study. J Comput Biol 22:1–9

    Article  CAS  PubMed  Google Scholar 

  30. Mukherjee S, Retwitzer MD, Barash D et al (2018) Phylogenomic and comparative analysis of the distribution and regulatory patterns of TPP riboswitches in fungi. Sci Rep 8:5563

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sudarsan N, Barrick JE, Breaker RR (2003) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gong S, Du C, Wang Y (2020) Regulation of the thiamine pyrophosphate (TPP)-sensing riboswitch in NMT1 mRNA from Neurospora crassa. FEBS Lett 594:625–635

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu M, Masuo S, Itoh E et al (2016) Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans. Biosci Biotechnol Biochem 80:1768–1775

    Article  CAS  PubMed  Google Scholar 

  34. Cheah MT, Wachter A, Sudarsan N et al (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    Article  CAS  PubMed  Google Scholar 

  35. Croft MT, Moulin M, Webb ME et al (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci USA 104:20770–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bocobza S, Adato A, Mandel T et al (2007) Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 21:2874–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wachter A, Tunc-Ozdemir M, Grove BC et al (2007) Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19:3437–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li S, Breaker RR (2013) Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing. Nucleic Acids Res 41:3022–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kubodera T, Watanabe M, Yoshiuchi K et al (2003) Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett 555:516–520

    Article  CAS  PubMed  Google Scholar 

  40. Chauvier A, Picard-Jean F, Berger-Dancause JC et al (2017) Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nat Commun 8:13892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodionov DA, Vitreschak AG, Mironov AA et al (2002) Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem 277:48949–48959

    Article  CAS  PubMed  Google Scholar 

  42. Kulshina N, Edwards TE, Ferre-D’amare AR (2010) Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch. RNA 16:186–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rentmeister A, Mayer G, Kuhn N et al (2007) Conformational changes in the expression domain of the Escherichia coli thiM riboswitch. Nucleic Acids Res 35:3713–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Serganov A, Polonskaia A, Phan AT et al (2006) Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441:1167–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edwards TE, Ferre-D’amare AR (2006) Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 14:1459–1468

    Article  CAS  PubMed  Google Scholar 

  46. Thore S, Leibundgut M, Ban N (2006) Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312:1208–1211

    Article  CAS  PubMed  Google Scholar 

  47. Meredith J., Zeller Ashok, Nuthanakanti Kelin, Li Jeffrey, Aubé Alexander, Serganov Kevin M., Weeks (2022) Subsite Ligand Recognition and Cooperativity in the TPP Riboswitch: Implications for Fragment-Linking in RNA Ligand Discovery. ACS Chemical Biology 17(2) 438–448

    Google Scholar 

  48. Thore S, Frick C, Ban N (2008) Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. J Am Chem Soc 130:8116–8117

    Article  CAS  PubMed  Google Scholar 

  49. Warner KD, Ferre-D’amare AR (2014) Crystallographic analysis of TPP riboswitch binding by small-molecule ligands discovered through fragment-based drug discovery approaches. Methods Enzymol 549:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Warner KD, Homan P, Weeks KM et al (2014) Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. Chem Biol 21:591–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Antunes D, Jorge NN, Garcia De Souza Costa M et al (2019) Unraveling RNA dynamical behavior of TPP riboswitches: a comparison between Escherichia coli and Arabidopsis thaliana. Sci Rep 9:4197

    Article  PubMed  PubMed Central  Google Scholar 

  52. Milligan JF, Groebe DR, Witherell GW et al (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pikovskaya O, Serganov AA, Polonskaia A et al (2009) Preparation and crystallization of riboswitch-ligand complexes. Methods Mol Biol 540:115–128

    Article  CAS  PubMed  Google Scholar 

  54. Rong M, Durbin RK, Mcallister WT (1998) Template strand switching by T7 RNA polymerase. J Biol Chem 273:10253–10260

    Article  CAS  PubMed  Google Scholar 

  55. Helm M, Brule H, Giege R et al (1999) More mistakes by T7 RNA polymerase at the 5′ ends of in vitro-transcribed RNAs. RNA 5:618–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pleiss JA, Derrick ML, Uhlenbeck OC (1998) T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4:1313–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferre-D’amare AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24:977–978

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guo HC, Collins RA (1995) Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from neurospora VS RNA. EMBO J 14:368–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249:398–408

    Article  CAS  PubMed  Google Scholar 

  61. Walker SC, Avis JM, Conn GL (2003) General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 31:e82

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Serganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nuthanakanti, A., Ariza-Mateos, A., Serganov, A. (2023). X-Ray Crystallography to Study Conformational Changes in a TPP Riboswitch. In: Ding, J., Stagno, J.R., Wang, YX. (eds) RNA Structure and Dynamics. Methods in Molecular Biology, vol 2568. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2687-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2687-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2686-3

  • Online ISBN: 978-1-0716-2687-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics