Skip to main content

Growth Rate Evaluation of the Budding Yeast Saccharomyces cerevisiae Cells Carrying Endogenously Expressed Fluorescent Protein Fusions

  • Protocol
  • First Online:
Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2564))

  • 1607 Accesses

Abstract

Fluorescent proteins within fluorescent fusions have been reported to affect cellular growth fitness via altering native protein function and intracellular localization. Here we report in detail a procedure to analyze the growth characteristics of yeast cells expressing such fusions in comparison to unmodified parental strain. This approach can serve as an initial step in fluorescent protein characterization in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan,Aequorea. J Cell Comp Physiol 59:223–239. https://doi.org/10.1002/jcp.1030590302

    Article  CAS  PubMed  Google Scholar 

  2. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233. https://doi.org/10.1016/0378-1119(92)90691-H

    Article  CAS  PubMed  Google Scholar 

  3. Lajoie P, Moir RD, Willis IM, Snapp EL (2012) Kar2p availability defines distinct forms of endoplasmic reticulum stress in living cells. Mol Biol Cell 23:955–964. https://doi.org/10.1091/mbc.E11-12-0995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schneider KL, Wollman AJM, Nyström T, Shashkova S (2021) Comparison of endogenously expressed fluorescent protein fusions behaviour for protein quality control and cellular ageing research. Sci Rep 111(11):1–9. https://doi.org/10.1038/s41598-021-92249-1

    Article  CAS  Google Scholar 

  5. Weill U, Krieger G, Avihou Z et al (2019) Assessment of GFP Tag position on protein localization and growth fitness in yeast. J Mol Biol 431:636–641. https://doi.org/10.1016/j.jmb.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Y, Di Gregorio SE, Duennwald ML, Lajoie P (2017) Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions. Traffic 18:58–70. https://doi.org/10.1111/tra.12453

    Article  CAS  PubMed  Google Scholar 

  7. Puig S, Lau M, Thiele DJ (2004) Cti6 is an Rpd3-Sin3 histone deacetylase-associated protein required for growth under iron-limiting conditions in Saccharomyces cerevisiae. J Biol Chem 279:30298–30306. https://doi.org/10.1074/jbc.M313463200

    Article  CAS  PubMed  Google Scholar 

  8. Papamichos-Chronakis M, Petrakis T, Ktistaki E et al (2002) Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9:1297–1305. https://doi.org/10.1016/S1097-2765(02)00545-2

    Article  CAS  PubMed  Google Scholar 

  9. Shaner NC, Lambert GG, Chammas A et al (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10:407–409. https://doi.org/10.1038/nmeth.2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernandez-Ricaud L, Kourtchenko O, Zackrisson M et al (2016) PRECOG: a tool for automated extraction and visualization of fitness components in microbial growth phenomics. BMC Bioinformatics 17:249. https://doi.org/10.1186/s12859-016-1134-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wollman AJM, Shashkova S, Hedlund EG et al (2017) Transcription factor clusters regulate genes in eukaryotic cells. Elife 6:e27451. https://doi.org/10.7554/eLife.27451

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ghaemmaghami S, Huh WK, Bower K et al (2003) Global analysis of protein expression in yeast. Nature 425:737–741. https://doi.org/10.1038/nature02046

    Article  CAS  PubMed  Google Scholar 

  13. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581. https://doi.org/10.1038/nsmb.1591

    Article  CAS  PubMed  Google Scholar 

  14. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. 75:333–366. https://doi.org/10.1146/ANNUREV.BIOCHEM.75.101304.123901

  15. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science (80-) 353. https://doi.org/10.1126/SCIENCE.AAC4354/ASSET/2E4F0D78-957D-4104-A56B-4D2CF1940226/ASSETS/GRAPHIC/353_AAC4354_F9.JPEG

  16. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. https://doi.org/10.1038/nature10317

    Article  CAS  PubMed  Google Scholar 

  17. Scekic-Zahirovic J, Sendscheid O, El Oussini H et al (2016) Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J 35:1077–1097. https://doi.org/10.15252/EMBJ.201592559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Royal Society Newton International Fellowship Alumni (AL\191025, AL\201039), Knut and Alice Wallenberg Foundation (KAW 2017-0091, KAW 2015.0272), Swedish Research Council (VR 2019-03937), and the DAAD Rise Worldwide program (SE-BI_BI-5129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sviatlana Shashkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schneider, K.L., Reibenspies, L.E., Nyström, T., Shashkova, S. (2023). Growth Rate Evaluation of the Budding Yeast Saccharomyces cerevisiae Cells Carrying Endogenously Expressed Fluorescent Protein Fusions. In: Sharma, M. (eds) Fluorescent Proteins. Methods in Molecular Biology, vol 2564. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2667-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2667-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2666-5

  • Online ISBN: 978-1-0716-2667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics