Skip to main content

Fluorescence Correlation Spectroscopy and Phase Separation

  • Protocol
  • First Online:
Phase-Separated Biomolecular Condensates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2563))

  • 2795 Accesses

Abstract

A quantitative understanding of the forces controlling the assembly and functioning of biomolecular condensates requires the identification of phase boundaries at which condensates form as well as the determination of tie-lines. Here, we describe in detail how Fluorescence Correlation Spectroscopy (FCS) provides a versatile approach to estimate phase boundaries of single-component and multicomponent solutions as well as insights about the transport properties of the condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732. https://doi.org/10.1126/science.1172046

    Article  CAS  PubMed  Google Scholar 

  2. Ditlev JA, Case LB, Rosen MK (2018) Who’s in and who’s out-compositional control of biomolecular condensates. J Mol Biol 430(23):4666–4684. https://doi.org/10.1016/j.jmb.2018.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18(5):285–298. https://doi.org/10.1038/nrm.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357(6357). https://doi.org/10.1126/science.aaf4382

  5. Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483(7389):336–340. https://doi.org/10.1038/nature10879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harmon TS, Holehouse AS, Rosen MK, Pappu RV (2017) Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. elife 6:ARTN e30294. https://doi.org/10.7554/eLife.30294

    Article  Google Scholar 

  7. Uversky VN (2021) Recent developments in the field of intrinsically disordered proteins: intrinsic disorder-based emergence in cellular biology in light of the physiological and pathological liquid-liquid phase transitions. Annu Rev Biophys 50:135–156. https://doi.org/10.1146/annurev-biophys-062920-063704

    Article  CAS  PubMed  Google Scholar 

  8. Taylor NO, Wei MT, Stone HA, Brangwynne CP (2019) Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys J

    Google Scholar 

  9. Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CCH, Eckmann CR, Myong S, Brangwynne CP (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. P Natl Acad Sci USA 112(23):7189–7194. https://doi.org/10.1073/pnas.1504822112

    Article  CAS  Google Scholar 

  10. Alshareedah I, Thurston GM, Banerjee PR (2021) Quantifying viscosity and surface tension of multicomponent protein-nucleic acid condensates. Biophys J 120(7):1161–1169. https://doi.org/10.1016/j.bpj.2021.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jawerth LM, Ijavi M, Ruer M, Saha S, Jahnel M, Hyman AA, Julicher F, Fischer-Friedrich E (2018) Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys Rev Lett 121(25):ARTN 258101. https://doi.org/10.1103/PhysRevLett.121.258101

    Article  Google Scholar 

  12. Alshareedah I, Moosa MM, Raju M, Potoyan DA, Banerjee PR (2020) Phase transition of RNA-protein complexes into ordered hollow condensates. Proc Natl Acad Sci U S A 117(27):15650–15658. https://doi.org/10.1073/pnas.1922365117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh A, Zhou HX (2020) Determinants for fusion speed of biomolecular droplets. Angew Chem Int Ed Engl 59(47):20837–20840. https://doi.org/10.1002/anie.202006711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghosh A, Kota D, Zhou HX (2021) Shear relaxation governs fusion dynamics of biomolecular condensates. Nat Commun 12(1):5995. https://doi.org/10.1038/s41467-021-26274-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alshareedah I, Moosa MM, Pham M, Potoyan DA, Banerjee PR (2021) Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nat Commun 12(1):6620. https://doi.org/10.1038/s41467-021-26733-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60(2):208–219. https://doi.org/10.1016/j.molcel.2015.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jawerth L, Fischer-Friedrich E, Saha S, Wang J, Franzmann T, Zhang XJ, Sachweh J, Ruer M, Ijavi M, Saha S, Mahamid J, Hyman AA, Julicher F (2020) Protein condensates as aging Maxwell fluids. Science 370(6522):1317. https://doi.org/10.1126/science.aaw4951

    Article  CAS  PubMed  Google Scholar 

  18. Martin EW, Harmon TS, Hopkins JB, Chakravarthy S, Incicco JJ, Schuck P, Soranno A, Mittag T (2021) A multi-step nucleation process determines the kinetics of prion-like domain phase separation. Nat Commun 12(1):4513. https://doi.org/10.1038/s41467-021-24727-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prabhu VM, Ali S, Bleuel M, Mao Y, Ma Y (2021) Ultra-small angle neutron scattering to study droplet formation in polyelectrolyte complex coacervates. Methods Enzymol 646:261–276. https://doi.org/10.1016/bs.mie.2020.07.001

    Article  CAS  PubMed  Google Scholar 

  20. Trivedi P, Palomba F, Niedzialkowska E, Digman MA, Gratton E, Stukenberg PT (2019) The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex. Nat Cell Biol 21(9):1127. https://doi.org/10.1038/s41556-019-0376-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei MT, Elbaum-Garfinkle S, Holehouse AS, Chen CC, Feric M, Arnold CB, Priestley RD, Pappu RV, Brangwynne CP (2017) Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem 9(11):1118–1125. https://doi.org/10.1038/nchem.2803

    Article  CAS  PubMed  Google Scholar 

  22. Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ, Bremer A, Grace CR, Soranno A, Pappu RV, Mittag T (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367(6478):694–699. https://doi.org/10.1126/science.aaw8653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shakya A, Park S, Rana N, King JT (2020) Liquid-liquid phase separation of histone proteins in cells: role in chromatin organization. Biophys J 118(3):753–764. https://doi.org/10.1016/j.bpj.2019.12.022

    Article  CAS  PubMed  Google Scholar 

  24. Wen J, Hong L, Krainer G, Yao QQ, Knowles TPJ, Wu S, Perrett S (2021) Conformational expansion of tau in condensates promotes irreversible aggregation. J Am Chem Soc 143(33):13056–13064. https://doi.org/10.1021/jacs.1c03078

    Article  CAS  PubMed  Google Scholar 

  25. Bracha D, Walls MT, Wei MT, Zhu L, Kurian M, Avalos JL, Toettcher JE, Brangwynne CP (2018) Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175(6):1467–1480 e1413. https://doi.org/10.1016/j.cell.2018.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujioka Y, Alam JM, Noshiro D, Mouri K, Ando T, Okada Y, May AI, Knorr RL, Suzuki K, Ohsumi Y, Noda NN (2020) Phase separation organizes the site of autophagosome formation. Nature 578(7794):301–305. https://doi.org/10.1038/s41586-020-1977-6

    Article  CAS  PubMed  Google Scholar 

  27. Peng SJ, Li WP, Yao YR, Xing WJ, Li PL, Chen CL (2020) Phase separation at the nanoscale quantified by dcFCCS. P Natl Acad Sci USA 117(44):27124–27131. https://doi.org/10.1073/pnas.2008447117

    Article  CAS  Google Scholar 

  28. Wilton T, Snead TMG, Seim I, Zhongxiu H, Gladfelter AS (2021) Membrane surfaces regulate assembly of a ribonucleoprotein condensate. BioRxiv. https://doi.org/10.1101/2021.04.24.441251

  29. Powers SK, Holehouse AS, Korasick DA, Schreiber KH, Clark NM, Jing HW, Emenecker R, Han S, Tycksen E, Hwang I, Sozzani R, Jez JM, Pappu RV, Strader LC (2019) Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol Cell 76(1):177. https://doi.org/10.1016/j.molcel.2019.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford, New York

    Google Scholar 

  31. Banerjee PR, Milin AN, Moosa MM, Onuchic PL, Deniz AA (2017) Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew Chem Int Edit 56(38):11354–11359. https://doi.org/10.1002/anie.201703191

    Article  CAS  Google Scholar 

  32. Rigler R, Elson E (2001) Fluorescence correlation spectroscopy: theory and applications. Springer series in chemical physics, vol 65. Springer, Berlin/New York

    Book  Google Scholar 

  33. Sauer M, Hofkens J, Enderlein J (2011) Handbook of fluorescence spectroscopy and imaging : from single molecules to ensembles. Wiley-VCH, Weinheim

    Book  Google Scholar 

  34. Nettels D, Gopich IV, Hoffmann A, Schuler B (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci U S A 104(8):2655–2660. https://doi.org/10.1073/pnas.0611093104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gopich IV, Nettels D, Schuler B, Szabo A (2009) Protein dynamics from single-molecule fluorescence intensity correlation functions. J Chem Phys 131(9):095102. https://doi.org/10.1063/1.3212597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Felekyan S, Kalinin S, Sanabria H, Valeri A, Seidel CAM (2012) Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. ChemPhysChem 13(4):1036–1053. https://doi.org/10.1002/cphc.201100897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Enderlein J, Gregor I (2005) Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum 76(3):Artn 033102. https://doi.org/10.1063/1.1863399

    Article  CAS  Google Scholar 

  38. Becker W, Su B, Holub O, Weisshart K (2011) FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc Res Tech 74(9):804–811. https://doi.org/10.1002/jemt.20959

    Article  CAS  PubMed  Google Scholar 

  39. Sankaran J, Bag N, Kraut RS, Wohland T (2013) Accuracy and precision in camera-based fluorescence correlation spectroscopy measurements. Anal Chem 85(8):3948–3954. https://doi.org/10.1021/ac303485t

    Article  CAS  PubMed  Google Scholar 

  40. Schuler B, Muller-Spath S, Soranno A, Nettels D (2012) Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol Biol 896:21–45. https://doi.org/10.1007/978-1-4614-3704-8_2

    Article  CAS  PubMed  Google Scholar 

  41. Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63:595–617. https://doi.org/10.1146/annurev-physchem-032210-103340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stennett EM, Ciuba MA, Levitus M (2014) Photophysical processes in single molecule organic fluorescent probes. Chem Soc Rev 43(4):1057–1075. https://doi.org/10.1039/c3cs60211g

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43(4):1044–1056. https://doi.org/10.1039/c3cs60237k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Frei MS, Salim A, Johnsson K (2019) Small-molecule fluorescent probes for live-cell super-resolution microscopy. J Am Chem Soc 141(7):2770–2781. https://doi.org/10.1021/jacs.8b11134

    Article  CAS  PubMed  Google Scholar 

  45. Mishra V (2020) Affinity tags for protein purification. Curr Protein Pept Sci 21(8):821–830. https://doi.org/10.2174/1389203721666200606220109

    Article  CAS  PubMed  Google Scholar 

  46. Konig I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B, Dingfelder F, Stuber JC, Pluckthun A, Nettels D, Schuler B (2015) Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat Methods 12(8):773–U129. https://doi.org/10.1038/Nmeth.3475

    Article  CAS  PubMed  Google Scholar 

  47. Saffarian S, Elson EL (2003) Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. Biophys J 84(3):2030–2042. https://doi.org/10.1016/S0006-3495(03)75011-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hodges C, Kafle RP, Hoff JD, Meiners JC (2018) Fluorescence correlation spectroscopy with photobleaching correction in slowly diffusing systems. J Fluoresc 28(2):505–511. https://doi.org/10.1007/s10895-018-2210-y

    Article  CAS  PubMed  Google Scholar 

  49. Widengren JR, R. (1996) Mechanisms of photobleachinginvestigated by fluorescencecorrelation spectroscopy. Bioimaging 4

    Google Scholar 

  50. Gong W, Das P, Samanta S, Xiong J, Pan W, Gu Z, Zhang J, Qu J, Yang Z (2019) Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates. Chem Commun (Camb) 55(60):8695–8704. https://doi.org/10.1039/c9cc02616a

    Article  CAS  Google Scholar 

  51. Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR, Stanley CB, Nourse A, Deniz AA, Kriwacki RW (2016) Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. elife 5. https://doi.org/10.7554/eLife.13571

  52. Shadish JA, DeForest CA (2020) Site-selective protein modification: from functionalized proteins to functional biomaterials. Matter-Us 2(1):50–77. https://doi.org/10.1016/j.matt.2019.11.011

    Article  Google Scholar 

  53. Guimaraes CP, Witte MD, Theile CS, Bozkurt G, Kundrat L, Blom AEM, Ploegh HL (2013) Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat Protoc 8(9):1787–1799. https://doi.org/10.1038/nprot.2013.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Theile CS, Witte MD, Blom AEM, Kundrat L, Ploegh HL, Guimaraes CP (2013) Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat Protoc 8(9):1800–1807. https://doi.org/10.1038/nprot.2013.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wood RJ, Pascoe DD, Brown ZK, Medlicott EM, Kriek M, Neylon C, Roach PL (2004) Optimized conjugation of a fluorescent label to proteins via intein-mediated activation and ligation. Bioconjug Chem 15(2):366–372. https://doi.org/10.1021/bc0341728

    Article  CAS  PubMed  Google Scholar 

  56. Hwang H, Myong S (2014) Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. Chem Soc Rev 43(4):1221–1229. https://doi.org/10.1039/c3cs60201j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koshioka M, Sasaki K, Masuhara H (1995) Time-dependent fluorescence depolarization analysis in 3-dimensional microspectroscopy. Appl Spectrosc 49(2):224–228. https://doi.org/10.1366/0003702953963652

    Article  CAS  Google Scholar 

  58. Doose S, Neuweiler H, Sauer M (2009) Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10(9–10):1389–1398. https://doi.org/10.1002/cphc.200900238

    Article  CAS  PubMed  Google Scholar 

  59. Majumdar A, Dogra P, Maity S, Mukhopadhyay S (2019) Liquid-liquid phase separation is driven by large-scale conformational unwinding and fluctuations of intrinsically disordered protein molecules. J Phys Chem Lett 10(14):3929–3936. https://doi.org/10.1021/acs.jpclett.9b01731

    Article  CAS  PubMed  Google Scholar 

  60. Zosel F, Soranno A, Buholzer KJ, Nettels D, Schuler B (2020) Depletion interactions modulate the binding between disordered proteins in crowded environments. Proc Natl Acad Sci U S A 117(24):13480–13489. https://doi.org/10.1073/pnas.1921617117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bohmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353(5–6):439–445. Pii S0009-2614(02)00044-1. https://doi.org/10.1016/S0009-2614(02)00044-1

    Article  CAS  Google Scholar 

  62. Gregor I, Enderlein J (2007) Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochem Photobiol Sci 6(1):13–18. https://doi.org/10.1039/b610310c

    Article  CAS  PubMed  Google Scholar 

  63. Enderlein J, I G, Patra D, Fitter J (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5 (2):155–161. doi:https://doi.org/10.2174/1389201043377020

  64. Sarkar A, Gallagher J, Wang I, Cappello G, Enderlein J, Delon A, Derouard J (2019) Confocal fluorescence correlation spectroscopy through a sparse layer of scattering objects. Opt Express 27(14):19382–19397. https://doi.org/10.1364/Oe.27.019382

    Article  CAS  PubMed  Google Scholar 

  65. Gennerich A, Schild D (2002) Anisotropic diffusion in mitral cell dendrites revealed by fluorescence correlation spectroscopy. Biophys J 83(1):510–522. https://doi.org/10.1016/S0006-3495(02)75187-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gennerich A, Schild D (2000) Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J 79(6):3294–3306. https://doi.org/10.1016/S0006-3495(00)76561-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6(1):164–170. https://doi.org/10.1002/cphc.200400319

    Article  CAS  PubMed  Google Scholar 

  68. Dertinger T, Loman A, Ewers B, Muller CB, Kramer B, Enderlein J (2008) The optics and performance of dual-focus fluorescence correlation spectroscopy. Opt Express 16(19):14353–14368. https://doi.org/10.1364/Oe.16.014353

    Article  PubMed  Google Scholar 

  69. Hell S, Reiner G, Cremer C, Stelzer EHK (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive-index. J Microsc-Oxford 169:391–405. https://doi.org/10.1111/j.1365-2818.1993.tb03315.x

    Article  Google Scholar 

  70. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. 1. Conceptual basis and theory. Biopolymers 13(1):1–27. https://doi.org/10.1002/bip.1974.360130102

    Article  CAS  Google Scholar 

  71. Bo S, Hubatsch L, Bauermann J, Weber CA, Julicher F (2021) Stochastic dynamics of single molecules across phase boundaries. Phys Rev Res 3(4):ARTN 043150. https://doi.org/10.1103/PhysRevResearch.3.043150

    Article  Google Scholar 

  72. Hubatsch L, Jawerth LM, Love C, Bauermann J, Tang TD, Bo S, Hyman AA, Weber CA (2021) Quantitative theory for the diffusive dynamics of liquid condensates. elife 10:ARTN e68620. 10.7554/eLife.68620, 10.7554/eLife.68620.sa1, 10.7554/eLife.68620.sa2

    Article  Google Scholar 

  73. Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10(24):3487–3497. https://doi.org/10.1039/b718132a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Priya Banerjee, Alessandro Borgia, Jasmine Cubuk, Elliot L. Elson, Erik Martin, Tanja Mittag, Rohit Pappu, and Ben Schuler for useful discussions on phase separation and fluorescence correlation spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Soranno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Incicco, J.J., Roy, D., Stuchell-Brereton, M.D., Soranno, A. (2023). Fluorescence Correlation Spectroscopy and Phase Separation. In: Zhou, HX., Spille, JH., Banerjee, P.R. (eds) Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, vol 2563. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2663-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2663-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2662-7

  • Online ISBN: 978-1-0716-2663-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics