Skip to main content

Baculovirus Production and Infection in Axolotls

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

Abstract

Salamanders have served as an excellent model for developmental and tissue regeneration studies. While transgenic approaches are available for various salamander species, their long generation time and expensive maintenance have driven the development of alternative gene delivery methods for functional studies. We have previously developed pseudotyped baculovirus (BV) as a tool for gene delivery in the axolotl (Oliveira et al. Dev Biol 433(2):262–275, 2018). Since its initial conception, we have refined our protocol of BV production and usage in salamander models. In this chapter, we describe a detailed and versatile protocol for BV-mediated transduction in urodeles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fei JF, Lou WP, Knapp D, Murawala P, Gerber T, Taniguchi Y, Nowoshilow S, Khattak S, Tanaka EM (2018) Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nat Protoc 13(12):2908–2943. https://doi.org/10.1038/s41596-018-0071-0

    Article  CAS  PubMed  Google Scholar 

  2. Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzman T, Crawford K, Tanaka EM (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 9(3):529–540. https://doi.org/10.1038/nprot.2014.040

    Article  CAS  PubMed  Google Scholar 

  3. Masselink W, Reumann D, Murawala P, Pasierbek P, Taniguchi Y, Bonnay F, Meixner K, Knoblich JA, Tanaka EM (2019) Broad applicability of a streamlined ethyl cinnamate-based clearing procedure. Development 146(3):dev166884. https://doi.org/10.1242/dev.166884

    Article  CAS  PubMed  Google Scholar 

  4. Pende M, Vadiwala K, Schmidbaur H, Stockinger AW, Murawala P, Saghafi S, Dekens MPS, Becker K, Revilla IDR, Papadopoulos SC, Zurl M, Pasierbek P, Simakov O, Tanaka EM, Raible F, Dodt HU (2020) A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Sci Adv 6(22):eaba0365. https://doi.org/10.1126/sciadv.aba0365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG, Bateman J, Bryant S, Guzikowski AR, Tsai SL, Coyne S, Ye WW, Freeman RM Jr, Peshkin L, Tabin CJ, Regev A, Haas BJ, Whited JL (2017) A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18(3):762–776. https://doi.org/10.1016/j.celrep.2016.12.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith JJ, Timoshevskaya N, Timoshevskiy VA, Keinath MC, Hardy D, Voss SR (2019) A chromosome-scale assembly of the axolotl genome. Genome Res 29(2):317–324. https://doi.org/10.1101/gr.241901.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao H, Habermann B, Hiller M, Tanaka EM, Myers EW (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554(7690):50–55. https://doi.org/10.1038/nature25458

    Article  CAS  PubMed  Google Scholar 

  8. Whited JL, Lehoczky JA, Tabin CJ (2012) Inducible genetic system for the axolotl. Proc Natl Acad Sci U S A 109(34):13662–13667. https://doi.org/10.1073/pnas.1211816109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Echeverri K, Tanaka EM (2003) Electroporation as a tool to study in vivo spinal cord regeneration. Dev Dyn 226(2):418–425. https://doi.org/10.1002/dvdy.10238

    Article  CAS  PubMed  Google Scholar 

  10. Rodrigo Albors A, Tanaka EM (2015) High-efficiency electroporation of the spinal cord in larval axolotl. Methods Mol Biol 1290:115–125. https://doi.org/10.1007/978-1-4939-2495-0_9

    Article  PubMed  Google Scholar 

  11. Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218(2):199–205. https://doi.org/10.1006/dbio.1999.9556

    Article  CAS  PubMed  Google Scholar 

  12. Whited JL, Tsai SL, Beier KT, White JN, Piekarski N, Hanken J, Cepko CL, Tabin CJ (2013) Pseudotyped retroviruses for infecting axolotl in vivo and in vitro. Development 140(5):1137–1146. https://doi.org/10.1242/dev.087734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khattak S, Sandoval-Guzman T, Stanke N, Protze S, Tanaka EM, Lindemann D (2013) Foamy virus for efficient gene transfer in regeneration studies. BMC Dev Biol 13:17. https://doi.org/10.1186/1471-213X-13-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oliveira CR, Lemaitre R, Murawala P, Tazaki A, Drechsel DN, Tanaka EM (2018) Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration. Dev Biol 433(2):262–275. https://doi.org/10.1016/j.ydbio.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  15. van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96(Pt 1):6–23. https://doi.org/10.1099/vir.0.067108-0

    Article  CAS  PubMed  Google Scholar 

  16. Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Yla-Herttuala S (2013) Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 21(4):739–749. https://doi.org/10.1038/mt.2012.286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mansouri M, Bellon-Echeverria I, Rizk A, Ehsaei Z, Cianciolo Cosentino C, Silva CS, Xie Y, Boyce FM, Davis MW, Neuhauss SC, Taylor V, Ballmer-Hofer K, Berger I, Berger P (2016) Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat Commun 7:11529. https://doi.org/10.1038/ncomms11529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaikkonen MU, Raty JK, Airenne KJ, Wirth T, Heikura T, Yla-Herttuala S (2006) Truncated vesicular stomatitis virus G protein improves baculovirus transduction efficiency in vitro and in vivo. Gene Ther 13(4):304–312. https://doi.org/10.1038/sj.gt.3302657

    Article  CAS  PubMed  Google Scholar 

  19. Kitagawa Y, Tani H, Limn CK, Matsunaga TM, Moriishi K, Matsuura Y (2005) Ligand-directed gene targeting to mammalian cells by pseudotype baculoviruses. J Virol 79(6):3639–3652. https://doi.org/10.1128/JVI.79.6.3639-3652.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mangor JT, Monsma SA, Johnson MC, Blissard GW (2001) A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein. J Virol 75(6):2544–2556. https://doi.org/10.1128/JVI.75.6.2544-2556.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tani H, Limn CK, Yap CC, Onishi M, Nozaki M, Nishimune Y, Okahashi N, Kitagawa Y, Watanabe R, Mochizuki R, Moriishi K, Matsuura Y (2003) In vitro and in vivo gene delivery by recombinant baculoviruses. J Virol 77(18):9799–9808. https://doi.org/10.1128/jvi.77.18.9799-9808.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nacu E, Gromberg E, Oliveira CR, Drechsel D, Tanaka EM (2016) FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration. Nature 533(7603):407–410. https://doi.org/10.1038/nature17972

    Article  CAS  PubMed  Google Scholar 

  23. Wagner I, Wang H, Weissert PM, Straube WL, Shevchenko A, Gentzel M, Brito G, Tazaki A, Oliveira C, Sugiura T, Shevchenko A, Simon A, Drechsel DN, Tanaka EM (2017) Serum proteases potentiate BMP-induced cell cycle re-entry of dedifferentiating muscle cells during newt limb regeneration. Dev Cell 40(6):608–617, e606. https://doi.org/10.1016/j.devcel.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Lemaitre RP, Bogdanova A, Borgonovo B, Woodruff JB, Drechsel DN (2019) FlexiBAC: a versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol 19(1):20. https://doi.org/10.1186/s12896-019-0512-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. O’Reilly DR, Miller LK, Luckow VA (1994) Baculovirus expression vectors: a laboratory manual. Oxford University Press, pp 1–347. https://doi.org/10.1016/0092-8674(93)90288-2

    Book  Google Scholar 

  26. Reed LJM, H. (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27(3):493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  27. Sung LY, Chen CL, Lin SY, Li KC, Yeh CL, Chen GY, Lin CY, Hu YC (2014) Efficient gene delivery into cell lines and stem cells using baculovirus. Nat Protoc 9(8):1882–1899. https://doi.org/10.1038/nprot.2014.130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank members of the PM, MHY, and EMT lab for their inputs in improving the protocol. Work in the PM laboratory is supported by grants from NIH-COBRE (5P20GM104318-08) and DFG (429469366). CRO is supported by predoctoral grant from the Portuguese Foundation for Science and Technology (SFRH/BD/51280/2010). Work in the MHY laboratory is supported by grants from DFG (22137416 & 450807335). Work in the EMT laboratory is supported by grants from ERC (AdG 742046) and FWF (Standalone I4846).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prayag Murawala or Elly M. Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Murawala, P., Oliveira, C.R., Okulski, H., Yun, M.H., Tanaka, E.M. (2023). Baculovirus Production and Infection in Axolotls. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics