Skip to main content

Embryonic Tissue and Blastema Transplantations

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

Abstract

Embryo grafts have been an experimental pillar in developmental biology, and particularly, in amphibian biology. Grafts have been essential in constructing fate maps of different cell populations and migratory patterns. Likewise, autografts and allografts in older larvae or adult salamanders have been widely used to disentangle mechanisms of regeneration. The combination of transgenesis and grafting has widened even more the application of this technique.

In this chapter, we provide a detailed protocol for embryo transplants in the axolotl (Ambystoma mexicanum ). The location and stages to label connective tissue, muscle, or blood vessels in the limb and blood cells in the whole animal. However, the potential of embryo transplants is enormous and impossible to cover in one chapter. Furthermore, we provide a protocol for blastema transplantation as an example of allograft in older larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nacu E, Knapp D, Tanaka EM, Epperlein HH (2009) Axolotl (Ambystoma mexicanum) embryonic transplantation methods. Cold Spring Harb Protoc 2009:pdb.prot5265. https://doi.org/10.1101/pdb.prot5265

    Article  CAS  PubMed  Google Scholar 

  2. Khattak S, Murawala P, Andreas H, Kappert V, Schuez M, Sandoval-Guzmán T, Crawford K, Tanaka EM (2014) Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 9:529–540. https://doi.org/10.1038/nprot.2014.040

    Article  CAS  PubMed  Google Scholar 

  3. Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009:pdb.emo128-9. https://doi.org/10.1101/pdb.emo128

    Article  CAS  Google Scholar 

  4. Dalton CH (1953) Relations between developing melanophores and embryonic tissues in the mexican axolotl. In: Pigment cell growth. pigment cell growth, pp. 17–27.

    Google Scholar 

  5. Keller RE, Löfberg J, Spieth J (1982) Neural crest cell behavior in white and dark embryos of Ambystoma mexicanum: epidermal inhibition of pigment cell migration in the white axolotl. Dev Biol 89:179–195. https://doi.org/10.1016/0012-1606(82)90306-2

    Article  CAS  PubMed  Google Scholar 

  6. Namenwirth M (1974) The inheritance of cell differentiation during limb regeneration in the axolotl. Dev Biol 41:42–56. https://doi.org/10.1016/0012-1606(74)90281-4

    Article  CAS  PubMed  Google Scholar 

  7. Gardiner DM, Muneoka K, Bryant SV (1986) The migration of dermal cells during blastema formation in axolotls. Dev Biol 118:488–493

    Article  CAS  Google Scholar 

  8. Pescitelli MJ, Stocum DL (1980) The origin of skeletal structures during lntercalary regeneration of larval ambystoma limbs’. Dev Biol 79:255

    Article  Google Scholar 

  9. Muneoka K, Holler-Dinsmore GV, Bryant SV (1985) A quantitative analysis of regeneration from chimaeric limb stumps in the axolotl. J Embryol Exp Morphol 90:1–12

    CAS  PubMed  Google Scholar 

  10. Steen TP (1970) Origin and differentiative capacities of cells in the blastema of the regenerating salamander limb. Am Zool 10:119–132. https://doi.org/10.1093/icb/10.2.119

    Article  CAS  PubMed  Google Scholar 

  11. Steen TP (1968) Stability of chondrocyte differentiation and contribution of muscle to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J Exp Zool 167:49–78. https://doi.org/10.1002/jez.1401670105

    Article  CAS  PubMed  Google Scholar 

  12. Sobkow L, Epperlein HH, Herklotz S, Straube WL, Tanaka EM (2006) A germline GFP transgenic axolotl and its use to track cell fate: Dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol 290:386–397. https://doi.org/10.1016/j.ydbio.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  13. Taniguchi Y, Kurth T, Medeiros DM, Tazaki A, Ramm R, Epperlein H-H (2015) Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae. Nat Pub Group 5:1–14. https://doi.org/10.1038/srep11428

    Article  Google Scholar 

  14. Epperlein HH, Selleck MAJ, Meulemans D, McHedlishvili L, Cerny R, Sobkow L, Bronner-Fraser M (2007) Migratory patterns and developmental potential of trunk neural crest cells in the axolotl embryo. Dev Dyn 236:389–403. https://doi.org/10.1002/dvdy.21039

    Article  PubMed  Google Scholar 

  15. Soukup V, Epperlein HH, Horácek I, Cerny R (2008) Dual epithelial origin of vertebrate oral teeth. Nature 455:795–798. https://doi.org/10.1038/nature07304

    Article  CAS  PubMed  Google Scholar 

  16. Tilley L, Papadopoulos S-C, Pende M, Fei J-F, Murawala P (2021) The use of transgenics in the laboratory axolotl. Dev Dyn 251:942. https://doi.org/10.1002/dvdy.357

    Article  PubMed  Google Scholar 

  17. Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao H, Habermann B, Hiller M, Tanaka EM, Myers EW (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55. https://doi.org/10.1038/nature25458

    Article  CAS  PubMed  Google Scholar 

  18. Smith JJ, Timoshevskaya N, Timoshevskiy VA, Keinath MC, Hardy D, Voss SR (2019) A chromosome-scale assembly of the axolotl genome. Genome Res 29:317–324. https://doi.org/10.1101/gr.241901.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mchedlishvili L, Epperlein HH, Telzerow A, Tanaka EM (2007) A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134:2083–2093. https://doi.org/10.1242/dev.02852

    Article  CAS  PubMed  Google Scholar 

  20. McCusker CD, Diaz-Castillo C, Sosnik J, Phan AQ, Gardiner DM (2016) Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs. Dev Biol 416:26–33. https://doi.org/10.1016/j.ydbio.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  21. Sandoval-Guzmán T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2013) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187. https://doi.org/10.1016/j.stem.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  22. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, Gac-Santel M, Nowoshilow S, Kageyama J, Khattak S, Currie J, Camp JG, Tanaka EM, Treutlein B (2018) Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 20:eaaq0681-19. https://doi.org/10.1126/science.aaq0681

    Article  CAS  Google Scholar 

  23. Currie JD, Kawaguchi A, Traspas RM, Schuez M, Chara O, Tanaka EM (2016) Live imaging of axolotl digit regeneration reveals spatiotemporal choreography of diverse connective tissue progenitor pools. Dev Cell 39:411–423. https://doi.org/10.1016/j.devcel.2016.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crawford K, Stocum DL (1988) Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs. Development 102:687–698

    Article  CAS  Google Scholar 

  25. Maden M (1982) Vitamin-a and pattern-formation in the regenerating limb. Nature 295:672–675. https://doi.org/10.1038/295672a0

    Article  CAS  PubMed  Google Scholar 

  26. Sanor LD, Flowers GP, Crews CM (2020) Multiplex CRISPR/Cas screen in regenerating haploid limbs of chimeric Axolotls. eLife 9:762–718. https://doi.org/10.7554/elife.48511

    Article  CAS  Google Scholar 

  27. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65. https://doi.org/10.1038/nature08152

    Article  CAS  PubMed  Google Scholar 

  28. Iwata R, Makanae A, Satoh A (2019) Stability and plasticity of positional memory during limb regeneration in Ambystoma mexicanum. Dev Dyn 52:343–312. https://doi.org/10.1002/dvdy.96

    Article  CAS  Google Scholar 

  29. Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145. https://doi.org/10.1016/j.ydbio.2004.02.016

    Article  CAS  PubMed  Google Scholar 

  30. Wolpert L (1971) Positional information and pattern formation. Curr Top Dev Biol 6:183–224. https://doi.org/10.1016/s0070-2153(08)60641-9

    Article  CAS  PubMed  Google Scholar 

  31. Carlson BM (1975) The effects of rotation and positional change of stump tissues upon morphogenesis of the regenerating axolotl limb. Dev Biol 47:269–291. https://doi.org/10.1016/0012-1606(75)90282-1

    Article  CAS  PubMed  Google Scholar 

  32. Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87. https://doi.org/10.1126/science.276.5309.81

    Article  CAS  PubMed  Google Scholar 

  33. Pescitelli MJ, Stocum DL (2003) The origin of skeletal structures during intercalary regeneration of larval Ambystoma limbs. Dev Biol 79:255–275. https://doi.org/10.1016/0012-1606(80)90115-3

    Article  Google Scholar 

  34. Echeverri K, Tanaka EM (2005) Proximodistal patterning during limb regeneration. Dev Biol 279:391–401. https://doi.org/10.1016/j.ydbio.2004.12.029

    Article  CAS  PubMed  Google Scholar 

  35. Muneoka K, Bryant SV (1982) Evidence that patterning mechanisms in development and regenerating limb are the same. 1–3.

    Google Scholar 

  36. Lheureux E (1983) Replacement of irradiated epidermis by migration of non-irradiated epidermis in the newt limb: the necessity of healthy epidermis for regeneration. J Embryol Exp Morphol 76:217–234

    CAS  PubMed  Google Scholar 

  37. Carlson BM (1974) Morphogenetic interactions between rotated skin cuffs and underlying stump tissues in regenerating axolotl forelimbs. Dev Biol 39:263–285. https://doi.org/10.1016/S0012-1606(74)80029-1

    Article  CAS  PubMed  Google Scholar 

  38. Zarzosa A, Grassme K, Tanaka E, Taniguchi Y, Bramke S, Kurth T, Epperlein H (2014) Axolotls with an under- or oversupply of neural crest can regulate the sizes of their dorsal root ganglia to normal levels. Dev Biol 394:1–18. https://doi.org/10.1016/j.ydbio.2014.08.001

    Article  CAS  Google Scholar 

  39. Kragl M, Tanaka EM (2009) Grafting axolotl (Ambystoma mexicanum) limb skin and cartilage from GFP+ donors to normal hosts. Cold Spring Harb Protoc 2009:pdb.prot5266. https://doi.org/10.1101/pdb.prot5266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Beate Gruhl, Anja Wagner, and Dr. Judith Konantz for their dedication to the axolotls. We thank all members of the Sandoval-Guzmán Lab current and past, for their unconditional support. This work was supported by the Center for Regenerative Therapies Dresden and the German Research Council (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Sandoval-Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schuez, M., Kurth, T., Currie, J.D., Sandoval-Guzmán, T. (2023). Embryonic Tissue and Blastema Transplantations. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics