Skip to main content

Functional Analysis of Foxp3 and Its Mutants by Retroviral Transduction of Murine Primary CD4+ T Cells

  • Protocol
  • First Online:
Regulatory T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2559))

  • 1218 Accesses

Abstract

The transcription factor Foxp3/FOXP3 orchestrates regulatory T (Treg) cell development and function by interacting with numerous target genes and partner proteins. Functional analysis of naturally occurring or engineered Foxp3/FOXP3 mutations has provided important insights into how the complex Foxp3/FOXP3-centered molecular network operates. Here, we describe detailed protocols for retroviral transduction of murine primary conventional CD4+ T cells to determine the impacts of Foxp3 mutations on the Treg-cell-like phenotype and function conferred by Foxp3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khattri R, Cox T, Yasayko S et al (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  CAS  Google Scholar 

  2. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    Article  CAS  Google Scholar 

  3. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    Article  CAS  Google Scholar 

  4. Rudra D, deRoos P, Chaudhry A et al (2012) Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13(10):1010–1019

    Article  CAS  Google Scholar 

  5. Kwon HK, Chen HM, Mathis D et al (2017) Different molecular complexes that mediate transcriptional induction and repression by FoxP3. Nat Immunol 18(11):1238–1248

    Article  CAS  Google Scholar 

  6. Ono M (2020) Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 160(1):24–37

    Article  CAS  Google Scholar 

  7. Samstein RM, Arvey A, Josefowicz SZ et al (2012) Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151(1):153–166

    Article  CAS  Google Scholar 

  8. Zheng Y, Josefowicz SZ, Kas A et al (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445(7130):936–940

    Article  CAS  Google Scholar 

  9. Bandukwala HS, Wu Y, Feuerer M et al (2011) Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34(4):479–491

    Article  CAS  Google Scholar 

  10. Kwon HK, Chen HM, Mathis D et al (2018) FoxP3 scanning mutagenesis reveals functional variegation and mild mutations with atypical autoimmune phenotypes. Proc Natl Acad Sci U S A 115(2):E253–E262

    Article  CAS  Google Scholar 

  11. Hayatsu N, Miyao T, Tachibana M et al (2017) Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47(2):268–283

    Article  CAS  Google Scholar 

  12. McMurchy AN, Gillies J, Allan SE et al (2010) Point mutants of forkhead box P3 that cause immune dysregulation, polyendocrinopathy, enteropathy, X-linked have diverse abilities to reprogram T cells into regulatory T cells. J Allergy Clin Immunol 126(6):1242–1251

    Article  CAS  Google Scholar 

  13. Bin Dhuban K, d’Hennezel E, Nagai Y et al (2017) Suppression by human FOXP3(+) regulatory T cells requires FOXP3-TIP60 interactions. Sci Immunol 2(12)

    Google Scholar 

  14. Allan SE, Crome SQ, Crellin NK et al (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19(4):345–354

    Article  CAS  Google Scholar 

  15. Wang J, Ioan-Facsinay A, van der Voort EI et al (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37(1):129–138

    Article  CAS  Google Scholar 

  16. Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24:209–226

    Article  CAS  Google Scholar 

  17. Miyao T, Floess S, Setoguchi R et al (2012) Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36:262–275

    Article  CAS  Google Scholar 

  18. Hill JA, Feuerer M, Tash K et al (2007) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27(5):786–800

    Article  CAS  Google Scholar 

  19. Ohkura N, Hamaguchi M, Morikawa H et al (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37(5):785–799

    Article  CAS  Google Scholar 

  20. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7(12):1063–1066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MEXT KAKENHI (17H06626 to R.M., 18H04025 to S.H., 19H04801 to S.H., 19 K16601 to R.M., 19 K16684 to A.N.) and by AMED PRIME (JP22gm6210018 to S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Hori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakajima, A., Murakami, R., Hori, S. (2023). Functional Analysis of Foxp3 and Its Mutants by Retroviral Transduction of Murine Primary CD4+ T Cells. In: Ono, M. (eds) Regulatory T-Cells. Methods in Molecular Biology, vol 2559. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2647-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2647-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2646-7

  • Online ISBN: 978-1-0716-2647-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics