Skip to main content

Visualizing Reversible Cisternal Stacking in Budding Yeast Pichia pastoris

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

Abstract

Cisternal stacking is reversible, initiated at the “cis” side of the Golgi, and gets undone at the “trans” side in a continuous cycle in tune with the cisternal maturation. TGN peeling is a hallmark of such reversible cisternal stacking, but its visualization is challenging. In wild-type cells, TGN peeling of Golgi stack happens at a lower frequency, but the event itself occurs very rapidly, making it difficult to detect by microscopy. However, we have documented that TGN peeling becomes frequent in mutants of factors that play a role in reversible cisternal stacking, such as the GRIP domain Golgin PpImh1, Arl3, or Arl1 GTPase. In the present context, we describe the quantitative live microscopic methodology to visualize the TGN peeling effect in Pichia pastoris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakamura N, Wei JH, Seemann J (2012) Modular organization of the mammalian Golgi apparatus. Curr Opin Cell Biol 24(4):467–474. https://doi.org/10.1016/j.ceb.2012.05.009

    Article  CAS  Google Scholar 

  2. Lowe M (2011) Structural organization of the Golgi apparatus. Curr Opin Cell Biol 23(1):85–93. https://doi.org/10.1016/j.ceb.2010.10.004

    Article  CAS  Google Scholar 

  3. Mowbrey K, Dacks JB (2009) Evolution and diversity of the Golgi body. FEBS Lett 583(23):3738–3745. https://doi.org/10.1016/j.febslet.2009.10.025

    Article  CAS  Google Scholar 

  4. Ramirez IB, Lowe M (2009) Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 20(7):770–779. https://doi.org/10.1016/j.semcdb.2009.03.011

    Article  CAS  Google Scholar 

  5. Muschalik N, Munro S (2018) Golgins. Curr Biol 28(8):R374–R376. https://doi.org/10.1016/j.cub.2018.01.006

    Article  CAS  Google Scholar 

  6. Brown FC, Schindelhaim CH, Pfeffer SR (2011) GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering. J Cell Biol 194(5):779–787. https://doi.org/10.1083/jcb.201104019

    Article  CAS  Google Scholar 

  7. Lee I, Tiwari N, Dunlop MH, Graham M, Liu X, Rothman JE (2014) Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc Natl Acad Sci U S A 111(5):1849–1854. https://doi.org/10.1073/pnas.1323895111

    Article  CAS  Google Scholar 

  8. Zhou W, Chang J, Wang X, Savelieff MG, Zhao Y, Ke S, Ye B (2014) GM130 is required for compartmental organization of dendritic Golgi outposts. Curr Biol 24(11):1227–1233. https://doi.org/10.1016/j.cub.2014.04.008

    Article  CAS  Google Scholar 

  9. Jain BK, Dahara R, Bhattacharyya D (2019) The golgin PpImh1 mediates reversible cisternal stacking in the Golgi of the budding yeast Pichia pastoris. J Cell Sci 132(17). https://doi.org/10.1242/jcs.230672

  10. Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA (2003) Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 14(6):2277–2291. https://doi.org/10.1091/mbc.e02-10-0697

    Article  CAS  Google Scholar 

  11. Ramazanov BR, Tran ML, von Blume J (2021) Sending out molecules from the TGN. Curr Opin Cell Biol 71:55–62. https://doi.org/10.1016/j.ceb.2021.02.005

    Article  CAS  Google Scholar 

  12. Day KJ, Papanikou E, Glick BS (2016) 4D confocal imaging of yeast organelles. Methods Mol Biol 1496:1–11. https://doi.org/10.1007/978-1-4939-6463-5_1

    Article  CAS  Google Scholar 

  13. Bhave M, Papanikou E, Iyer P, Pandya K, Jain BK, Ganguly A, Sharma C, Pawar K, Austin J 2nd, Day KJ, Rossanese OW, Glick BS, Bhattacharyya D (2014) Golgi enlargement in Arf-depleted yeast cells is due to altered dynamics of cisternal maturation. J Cell Sci 127(Pt 1):250–257. https://doi.org/10.1242/jcs.140996

    Article  CAS  Google Scholar 

  14. Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ, Glick BS (2006) Golgi maturation visualized in living yeast. Nature 441(7096):1002–1006. https://doi.org/10.1038/nature04717

    Article  CAS  Google Scholar 

  15. Iyer P, Bhave M, Jain BK, RoyChowdhury S, Bhattacharyya D (2018) Vps74p controls Golgi size in an Arf1-dependent manner. FEBS Lett 592(22):3720–3735. https://doi.org/10.1002/1873-3468.13266

    Article  CAS  Google Scholar 

  16. Sears IB, O’Connor J, Rossanese OW, Glick BS (1998) A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14(8):783–790. https://doi.org/10.1002/(SICI)1097-0061(19980615)14:8<783::AID-YEA272>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  17. Gould SJ, McCollum D, Spong AP, Heyman JA, Subramani S (1992) Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8(8):613–628. https://doi.org/10.1002/yea.320080805

    Article  CAS  Google Scholar 

  18. Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519–2524. https://doi.org/10.1093/nar/24.13.2519

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dahara, R., Jain, B., Bhattacharyya, D. (2023). Visualizing Reversible Cisternal Stacking in Budding Yeast Pichia pastoris. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics