Skip to main content

Identification of Plant Protein–Metabolite Interactions by Limited Proteolysis-Coupled Mass Spectrometry (LiP-MS)

  • Protocol
  • First Online:
Cell-Wide Identification of Metabolite-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2554))

Abstract

The interactions between metabolites and proteins constitute crucial events in cell signaling and metabolism. In recent years, large-scale proteomics techniques have emerged to identify and characterize protein–metabolite interactions. However, their implementation in plants is generally lagging behind, preventing a complete understanding of the regulatory mechanisms governing plant physiology. Recently, a novel approach to identify metabolite-binding proteins, namely, limited proteolysis-coupled mass spectrometry (LiP-MS), was developed originally for microbial proteomes. Here, we present an adapted and accessible version of the LiP-MS protocol for use in plants. Plant proteomes are extracted and incubated with the metabolite of interest or control treatment, followed by a limited digestion by a nonspecific/promiscuous protease. Subsequently, a conventional shotgun proteomics sample preparation is performed including a complete digestion with the sequence-specific protease trypsin. Finally, label-free proteomics analysis is applied to identify structure-dependent proteolytic patterns corresponding to protein targets of the specific metabolite and their binding sites. Given its amenability to relatively high throughput, the LiP-MS approach may open a potent avenue for the discovery of novel regulatory mechanisms in plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schopper S, Kahraman A, Leuenberger P, Feng Y, Piazza I, Müller O, Boersema PJ, Picotti P (2017) Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat Protoc 12(11):2391–2410. https://doi.org/10.1038/nprot.2017.100

    Article  CAS  PubMed  Google Scholar 

  2. Pepelnjak M, de Souza N, Picotti P (2020) Detecting protein-small molecule interactions using limited proteolysis-mass spectrometry (LiP-MS). Trends Biochem Sci 45(10):919–920. https://doi.org/10.1016/j.tibs.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  3. Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, Picotti P (2018) A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172(1–2):358–372. https://doi.org/10.1016/j.cell.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Cappelletti V, Hauser T, Piazza I, Pepelnjak M, Malinovska L, Fuhrer T, Li Y, Dörig C, Boersema P, Gillet L, Grossbach J, Dugourd A, Saez-Rodriguez J, Beyer A, Zamboni N, Caflisch A, de Souza N, Picotti P (2021) Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 184(2):545–559. https://doi.org/10.1016/j.cell.2020.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  6. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  7. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  8. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14(8):e8126. https://doi.org/10.15252/msb.20178126

    Article  PubMed  PubMed Central  Google Scholar 

  9. Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT, Wolski W, Collins BC, Malmström J, Malmström L, Aebersold R (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32(3):219–223. https://doi.org/10.1038/nbt.2841

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Smits AH, van Tilburg GBA, Ovaa H, Huber W, Vermeulen M (2018) Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc 13(3):530–550. https://doi.org/10.1038/nprot.2017.147

    Article  CAS  PubMed  Google Scholar 

  11. Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, Bretaudeau A, Brillet-Guéguen L, Čech M, Chilton J, Clements D, Doppelt-Azeroual O, Erxleben A, Freeberg MA, Gladman S, Hoogstrate Y, Hotz H-R, Houwaart T, Jagtap P, Larivière D, Le Corguillé G, Manke T, Mareuil F, Ramirez F, Ryan D, Sigloch FC, Soranzo N, Wolff J, Videm P, Wolfien M, Wubuli A, Yusuf D, Galaxy Training Network, Taylor J, Backofen R, Nekrutenko A, Grüning B (2018) Community-driven data analysis training for biology. Cell Syst 6(6):752–758. https://doi.org/10.1016/j.cels.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Willems P, Fels U, Staes A, Gevaert K, Van Damme P (2021) Use of hybrid data-dependent and-independent acquisition spectral libraries empowers dual-proteome profiling. J Proteome Res 20(2):1165–1177. https://doi.org/10.1021/acs.jproteome.0c00350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tyanova S, Mann M, Cox J (2014) MaxQuant for in-depth analysis of large SILAC datasets. Methods Mol Biol 1188:351–364. https://doi.org/10.1007/978-1-4939-1142-4_24

    Article  CAS  PubMed  Google Scholar 

  14. Sinitcyn P, Hamzeiy H, Salinas Soto F, Itzhak D, McCarthy F, Wichmann C, Steger M, Ohmayer U, Distler U, Kaspar-Schoenefeld S, Prianichnikov N, Yilmaz S, Rudolph JD, Tenzer S, Perez-Riverol Y, Nagaraj N, Humphrey SJ, Cox J (2021) MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat Biotechnol. in press. https://doi.org/10.1038/s41587-021-00968-7

  15. Fahrner M, Föll M (2021) Library generation for DIA analysis (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/proteomics/tutorials/DIA_lib_OSW/tutorial.html. Online. Accessed 29 July 2021

  16. Fahrner M, Föll M (2021) DIA analysis using OpenSwathWorkflow (Galaxy Training Materials). https://training.galaxyproject.org/training-material/topics/proteomics/tutorials/DIA_Analysis_OSW/tutorial.html. Online. Accessed 29 July 2021

  17. Jonckheere V, Fijalkowska D, Van Damme P (2018) Omics assisted N-terminal proteoform and protein expression profiling on methionine aminopeptidase 1 (MetAP1) deletion. Mol Cell Proteomics 17(4):694–708. https://doi.org/10.1074/mcp.RA117.000360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiva C, Olivella R, Borràs E, Espadas G, Pastor O, Solé A, Sabido E (2018) QCloud: a cloud-based quality control system for mass spectrometry-based proteomics laboratories. PLoS One 13(1):e0189209. https://doi.org/10.1371/journal.pone.0189209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mellacheruvu D, Wright Z, Couzens AL, Lambert J-P, St-Denis NA, Li T, Miteva YV, Hauri S, Sardiu ME, Low TY, Halim VA, Bagshaw RD, Hubner NC, al-Hakim A, Bouchard A, Faubert D, Fermin D, Dunham WH, Goudreault M, Lin Z-Y, Badillo BG, Pawson T, Durocher D, Coulombe B, Aebersold R, Superti-Furga G, Colinge J, Heck AJR, Choi H, Gstaiger M, Mohammed S, Cristea IM, Bennett KL, Washburn MP, Raught B, Ewing RM, Gingras AC, Nesvizhskii AI (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10(8):730–736. https://doi.org/10.1038/nmeth.2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Goossens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Venegas-Molina, J., Van Damme, P., Goossens, A. (2023). Identification of Plant Protein–Metabolite Interactions by Limited Proteolysis-Coupled Mass Spectrometry (LiP-MS). In: Skirycz, A., Luzarowski, M., Ewald, J.C. (eds) Cell-Wide Identification of Metabolite-Protein Interactions. Methods in Molecular Biology, vol 2554. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2624-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2624-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2623-8

  • Online ISBN: 978-1-0716-2624-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics