Abstract
Antimicrobial peptides (AMPs) have been a topic of substantial research as the next-generation antibiotics. They have been extensively studied for the selectivity and action against microbial membrane lipids in imparting their targeted functioning. To determine the effectivity of the peptides against the Gram-negative pathogens, it is imperative to elucidate their role in interacting with the lipopolysaccharide moieties. Lipopolysaccharide is a major component of the outer membrane of the Gram-negative bacteria. It serves to protect the bacteria as well as govern the functionality of several antibacterial agents. It can prevent the access of the agents into the inner membrane of the bacteria, thus rendering them inactive. Several techniques have been employed to study the interaction for better designing of peptides; NMR spectroscopy is one of the most widely used techniques in determining the interactive properties of peptides with LPS as it can provide the details in atomistic level. NMR spectroscopy provides information about the structural and conformational changes as well as the dynamics of the interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422. https://doi.org/10.1016/S0140-6736(97)80051-7
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098
Corey GR, Kabler H, Mehra P, Gupta S, Overcash JS, Porwal A, Giordano P, Lucasti C, Perez A, Good S, Jiang H, Moeck G, O’Riordan W (2014) Single-dose oritavancin in treatment of acute bacterial skin infections. N Engl J Med 370(23):2180–2190. https://doi.org/10.1056/NEJMoa1310422
Van Duin D, Kaye KS, Neuner EA, Bonomo RA (2013) Carbapenem-resistant enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis 75(2):115–120. 10,1016/j.diagmicrobio2012.11.009
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddoc LJV (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51. https://doi.org/10.1038/nrmicro3380
Allende D, McIntosh TJ (2003) Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis. Biochemistry 42(4):1101–1108. https://doi.org/10.1021/bi026932s
Snyder DS, McIntosh TJ (2000) The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry 39(38):11777–11787. https://doi.org/10.1021/bi000810n
Hancock RE, Wong PG (1984) Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother 26(1):48–52. https://doi.org/10.1128/aac.26.1.48
Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382–388. https://doi.org/10.1126/science.8153625
Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 1758(9):1513–1522. https://doi.org/10.1016/j.bbamem.2006.05.017
Mangoni ML, Epand RF, Rosenfeld Y, Peleg A, Barra D, Epand RM, Shai Y (2008) Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J Biol Chem 283(34):22907–22917. https://doi.org/10.1074/jbc.M800495200
Ghosh A, Datta A, Jana J, Kar RK, Chatterjee C, Chatterjee S, Bhunia A (2014) Sequence context induced antimicrobial activity: insight into lipopolysaccharide permeabilization. Mol BioSyst 10:1596–1612. https://doi.org/10.1039/C4MB00111G
Cohen J (2002) The immunopathogenesis of sepsis. Nature 420(6917):885–891. https://doi.org/10.1038/nature01326
Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3(1):36–46. https://doi.org/10.1038/nrmicro1068
Bhattacharyya D, Mohite GM, Krishnamoorthy J, Gayen N, Mehra S, Navalkar A, Kotler SA, Ratha BN, Ghosh A, Kumar R, Garai K, Mandal AK, Maji SK, Bhunia A (2019) Lipopolysaccharide from gut microbiota modulates alpha- Synuclein aggregation and alters its biological functions. ACS Chem Neurosci 10(5):2229–2236. https://doi.org/10.1021/acschemneuro.8b00733
Mangoni ML, Shai Y (2009) Temporins and their synergism against gram-negative bacteria and in lipopolysaccharide detoxification. Biochim Biophys Acta 1788(8):1610–1619. https://doi.org/10.1016/j.bbamem.2009.04.021
Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691. https://doi.org/10.1016/j.peptides.2003.08.023
Hancock RE, Patrzykat A (2002) Clinical development of cationic antimicrobial peptide: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2(1):79–83. https://doi.org/10.2174/1568005024605855
Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA (2005) Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys J 89(3):1874–1881. https://doi.org/10.1529/biophysj.105.066589
Mukherjee S, Kar RK, Nanga RPR, Mroue KH, Ramamoorthy A, Bhunia A (2017) Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Phys Chem Chem Phys 19(29):19289–19299. https://doi.org/10.1039/c7cp01941f
Wang G (2008) NMR of membrane-associated peptides and proteins. Curr Protein Pept Sci 9(1):50–69. https://doi.org/10.2174/138920308783565714
Haney EF, Hunter HN, Matsuzaki K, Vogel HJ (2009) Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta 1788(8):1639–1655. https://doi.org/10.1016/j.bbamem.2009.01.002
Li X, Li Y, Han H, Miller DW, Wang G (2006) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128(17):5776–5785. https://doi.org/10.1021/ja0584875
Bhattacharjya S, Domadia PN, Bhunia A, Malladi S, David SA (2007) High-resolution solution structure of a designed peptide bound to lipopolysaccharide: transferred nuclear Overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry 46(20):5864–5874. https://doi.org/10.1021/bi6025159
Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47(6):451–463. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
Pandit G, Biswas K, Ghosh S, Debnath S, Bidkar AP, Satpati P, Bhunia A, Chatterjee S (2020) Rationally designed antimicrobial peptides: insight into the mechanism of eleven residue peptides against microbial infections. Biochim Biophys Acta Biomembr 1862(4):183177. https://doi.org/10.1016/jbbamem.2020.183177
Pandit G, Chowdhury N, Mohid SA, Bidkar P, Bhunia A, Chatterjee S (2021) Effect of secondary structure and side chain length of hydrophobic amino-acid residues on antimicrobial activity and toxicity of 14- residue long de novo AMPs. ChemMedChem 16(2):355–367. https://doi.org/10.1002/cmdc.202000550
Porcelli F, Ramamoorthy A, Barany G, Veglia G (2013) On the role of NMR spectroscopy for characterization of antimicrobial peptides. Methods Mol Biol 1063:159–180. https://doi.org/10.1007/978-1-62703-583-5_9
Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55. https://doi.org/10.1124/pr.55.1.2
Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S (2010) NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J Biol Chem 285(6):3883–3895. https://doi.org/10.1074/jbc.M109.065672
Datta A, Ghosh A, Airoldi C, Sperandeo P, Mroue KH, Jiménez- Barbero J, Kundu P, Ramamoorthy A, Bhunia A (2015) Antimicrobial peptides: insights into membrane Permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Sci Rep 5:11951. https://doi.org/10.1038/srep11951
Lee DK, Brender JR, Sciacca MF, Krishnamoorthy J, Yu C, Ramamoorthy A (2013) Lipid composition- dependent membrane fragmentation and pore- forming mechanisms of membrane disruption by pexiganan (MSI-78). Biochemistry 52(19):3254–3263. https://doi.org/10.1021/bi400087n
Patching SG (2014) Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta 1838(1 Pt A):43–55. https://doi.org/10.1016/j.bbamem.2013.04.028
Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534. https://doi.org/10.1126/science.274.5292.1531
Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP (2011) Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278(5):687–703. https://doi.org/10.1111/j.1742-4658.2011.08004.x
Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal G (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7(9):738–745. https://doi.org/10.1038/nrd2606
Bhattacharjya S (2016) NMR structures and interactions of antimicrobial peptides with lipopolysaccharide: connecting structures to functions. Curr Top Med Chem 16(1):4–15. https://doi.org/10.2174/1568026615666150703121943
Castanar L, Parella T (2015) Recent advances in small molecule NMR: improved HSQC and HSQMBC experiments. Ann Rep NMR Spectrosc 84:163–232. https://doi.org/10.1016/bs.arnmr.2014.10.004
Bhattacharjya S, Ramamoorthy A (2009) Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J 276(22):6465–6473. https://doi.org/10.1111/j.1742-4658.2009.07357.x
Datta A, Kundu P, Bhunia A (2016) Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: structural insights into lipopolysaccharide binding. J Colloid Interface Sci 461:335–345. https://doi.org/10.1016/j.jcis.2015.09.036
Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A, Bhunia A (2019) Application of tungsten Disulphide quantum dot- conjugated antimicrobial peptides in bioimaging and antimicrobial therapy. Colloids Surf B Biointerfaces 176:360–370. https://doi.org/10.1016/j.calsurfb.2019.01.02042
Brender JR, Krishnamoorthy J, Ghosh A, Bhunia A (2018) Binding moiety mapping by saturation transfer difference NMR. Methods Mol Biol 1824:49–65. https://doi.org/10.1007/978-1-4939-8630-9_4
Bhunia A, Bhattacharjya S, Chatterjee S (2011) Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 17(9–10):505–513. https://doi.org/10.1016/j.drudis.2011.12.01642
Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38(12):1784–1788. https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q
Mühlhahn P, Bernhagen J, Czisch M, Georgescu J, Renner C, Ross A, Bucala R, Holak TA (1996) NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF). Protein Sci 5(10):2095–2103. https://doi.org/10.1002/pro.5560051016
Becker W, Bhattiprolu KC, Gubensak N, Zangger K (2018) Investigating protein- ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem 19(8):895–906. https://doi.org/10.1002/cphc.201701253
Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct 33:387–413. https://doi.org/10.1146/annurev.biophys.33.110502.140306
Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411–415. https://doi.org/10.1103/PhysRev.92.411
Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30:501–524. https://doi.org/10.1039/C2NP20104F
Struck AW, Axmann M, Pfefferle S, Drosten C, Meyer B (2012) A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antivir Res 94(3):288–296. https://doi.org/10.1016/j.antiviral.2011.12.012
Campbell AP, Sykes BD (1993) The two-dimensional transferred nuclear Overhauser effect: theory and practice. Annu Rev Biophys Biomol Struct 22:99–122. https://doi.org/10.1146/annurev.bb.22.060193.000531
Carlomagno T (2005) Ligand-target interactions: what can we learn from NMR? Annu Rev Biophys Biomol Struct 34:245–266. https://doi.org/10.1146/annurev.biophys.34.040204.144419
Surya W, Li Y, Torres J (2018) Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr 1860(6):1309–1317. https://doi.org/10.1016/j.bbamem.2018.02.017
Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95(1):1–6. https://doi.org/10.1016/0006-291x(80)90695-6
Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123(25):6108–6117. https://doi.org/10.1021/ja0100120
Kemper S, Patel MK, Errey JC, Davis BG, Jones JA, Claridge TD (2010) Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments. J Magn Reson 203(1):1–10. https://doi.org/10.1016/j.jmr.2009.11.015
Bhunia A, Bhattacharjya S (2011) Mapping residue- specific contacts of polymyxin B with lipopolysaccharide by saturation transfer difference NMR: insights into outer membrane disruption and endotoxin neutralization. Biopolymers 96(3):273–287. https://doi.org/10.1002/bip.21530
Biswas K, Ilyas H, Datta A, Bhunia A (2020) NMR assisted antimicrobial peptide designing: structure based modifications and functional correlation of a designed peptide VG16KRKP. Curr Med Chem 27(9):1387–1404. 10,2174/0929867326666190624090817
Loeches IM, Dale GE, Torres A (2018) Murepavadin: a new antibiotic class in the pipeline. Expert Rev Anti-Infect Ther 16(4):259–268. https://doi.org/10.1080/14787210.2018.1441024
Bhunia A, Ramamoorthy A, Bhattacharjya S (2009) Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Chemistry 15(9):2036–2040. https://doi.org/10.1002/chem.200802635
Datta A, Bhattacharyya D, Singh S, Ghosh A, Schmidtchen A, Malmsten M, Bhunia A (2016) Role of aromatic amino acids in lipopolysaccharide and membrane interactions of antimicrobial peptides for use in plant disease control. J Biol Chem 291(25):13301–13317. https://doi.org/10.1074/jbc.M116.719575
Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulse-field gradients. J Magn Reson 112(2):275–279. https://doi.org/10.1006/jmra.1995.1047
Piotto M, Saudek V, Sklenár V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665. https://doi.org/10.1007/BF02192855
Marion D, Ikura M, Tschudin R, Bax A (1969) Rapid recording of 2D NMR spectra without phase cycling. Application to study of hydrogen exchange in proteins. J Magn Reson 85:393–399. https://doi.org/10.1016/0022-2364(89)90152-2
Mukherjee S, Harikishore A, Bhunia A (2021) Targeting C-terminal helical bundle of NCOVID19 envelope (E) protein. Int J Biol Macromol 175:131–139. https://doi.org/10.1016/j.ijbiomac.2021.02.011
Chowdhury R, Ilyas H, Ghosh A, Ali H, Ghorai A, Midya A, Jana NR, Das S, Bhunia A (2017) Multivalent gold nanoparticle-peptide conjugates for targeting intracellular bacterial infections. Nanoscale 9(37):14074–14093. https://doi.org/10.1039/c7nr04062h
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Biswas, K., Bhunia, A. (2022). Probing the Functional Interaction Interface of Lipopolysaccharide and Antimicrobial Peptides: A Solution-State NMR Perspective. In: Sperandeo, P. (eds) Lipopolysaccharide Transport. Methods in Molecular Biology, vol 2548. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2581-1_13
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2581-1_13
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2580-4
Online ISBN: 978-1-0716-2581-1
eBook Packages: Springer Protocols