Skip to main content

Probing the Functional Interaction Interface of Lipopolysaccharide and Antimicrobial Peptides: A Solution-State NMR Perspective

  • Protocol
  • First Online:
Lipopolysaccharide Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2548))

  • 796 Accesses

Abstract

Antimicrobial peptides (AMPs) have been a topic of substantial research as the next-generation antibiotics. They have been extensively studied for the selectivity and action against microbial membrane lipids in imparting their targeted functioning. To determine the effectivity of the peptides against the Gram-negative pathogens, it is imperative to elucidate their role in interacting with the lipopolysaccharide moieties. Lipopolysaccharide is a major component of the outer membrane of the Gram-negative bacteria. It serves to protect the bacteria as well as govern the functionality of several antibacterial agents. It can prevent the access of the agents into the inner membrane of the bacteria, thus rendering them inactive. Several techniques have been employed to study the interaction for better designing of peptides; NMR spectroscopy is one of the most widely used techniques in determining the interactive properties of peptides with LPS as it can provide the details in atomistic level. NMR spectroscopy provides information about the structural and conformational changes as well as the dynamics of the interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422. https://doi.org/10.1016/S0140-6736(97)80051-7

    Article  CAS  PubMed  Google Scholar 

  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  3. Corey GR, Kabler H, Mehra P, Gupta S, Overcash JS, Porwal A, Giordano P, Lucasti C, Perez A, Good S, Jiang H, Moeck G, O’Riordan W (2014) Single-dose oritavancin in treatment of acute bacterial skin infections. N Engl J Med 370(23):2180–2190. https://doi.org/10.1056/NEJMoa1310422

    Article  CAS  PubMed  Google Scholar 

  4. Van Duin D, Kaye KS, Neuner EA, Bonomo RA (2013) Carbapenem-resistant enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis 75(2):115–120. 10,1016/j.diagmicrobio2012.11.009

    Google Scholar 

  5. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddoc LJV (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51. https://doi.org/10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  6. Allende D, McIntosh TJ (2003) Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis. Biochemistry 42(4):1101–1108. https://doi.org/10.1021/bi026932s

    Article  CAS  PubMed  Google Scholar 

  7. Snyder DS, McIntosh TJ (2000) The lipopolysaccharide barrier: correlation of antibiotic susceptibility with antibiotic permeability and fluorescent probe binding kinetics. Biochemistry 39(38):11777–11787. https://doi.org/10.1021/bi000810n

    Article  CAS  PubMed  Google Scholar 

  8. Hancock RE, Wong PG (1984) Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother 26(1):48–52. https://doi.org/10.1128/aac.26.1.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382–388. https://doi.org/10.1126/science.8153625

    Article  CAS  PubMed  Google Scholar 

  10. Rosenfeld Y, Shai Y (2006) Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochim Biophys Acta 1758(9):1513–1522. https://doi.org/10.1016/j.bbamem.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  11. Mangoni ML, Epand RF, Rosenfeld Y, Peleg A, Barra D, Epand RM, Shai Y (2008) Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J Biol Chem 283(34):22907–22917. https://doi.org/10.1074/jbc.M800495200

    Article  CAS  PubMed  Google Scholar 

  12. Ghosh A, Datta A, Jana J, Kar RK, Chatterjee C, Chatterjee S, Bhunia A (2014) Sequence context induced antimicrobial activity: insight into lipopolysaccharide permeabilization. Mol BioSyst 10:1596–1612. https://doi.org/10.1039/C4MB00111G

    Article  CAS  PubMed  Google Scholar 

  13. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420(6917):885–891. https://doi.org/10.1038/nature01326

    Article  CAS  PubMed  Google Scholar 

  14. Miller SI, Ernst RK, Bader MW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3(1):36–46. https://doi.org/10.1038/nrmicro1068

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharyya D, Mohite GM, Krishnamoorthy J, Gayen N, Mehra S, Navalkar A, Kotler SA, Ratha BN, Ghosh A, Kumar R, Garai K, Mandal AK, Maji SK, Bhunia A (2019) Lipopolysaccharide from gut microbiota modulates alpha- Synuclein aggregation and alters its biological functions. ACS Chem Neurosci 10(5):2229–2236. https://doi.org/10.1021/acschemneuro.8b00733

    Article  CAS  PubMed  Google Scholar 

  16. Mangoni ML, Shai Y (2009) Temporins and their synergism against gram-negative bacteria and in lipopolysaccharide detoxification. Biochim Biophys Acta 1788(8):1610–1619. https://doi.org/10.1016/j.bbamem.2009.04.021

    Article  CAS  PubMed  Google Scholar 

  17. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691. https://doi.org/10.1016/j.peptides.2003.08.023

    Article  CAS  PubMed  Google Scholar 

  18. Hancock RE, Patrzykat A (2002) Clinical development of cationic antimicrobial peptide: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2(1):79–83. https://doi.org/10.2174/1568005024605855

    Article  CAS  PubMed  Google Scholar 

  19. Ambroggio EE, Separovic F, Bowie JH, Fidelio GD, Bagatolli LA (2005) Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein. Biophys J 89(3):1874–1881. https://doi.org/10.1529/biophysj.105.066589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mukherjee S, Kar RK, Nanga RPR, Mroue KH, Ramamoorthy A, Bhunia A (2017) Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Phys Chem Chem Phys 19(29):19289–19299. https://doi.org/10.1039/c7cp01941f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang G (2008) NMR of membrane-associated peptides and proteins. Curr Protein Pept Sci 9(1):50–69. https://doi.org/10.2174/138920308783565714

    Article  PubMed  Google Scholar 

  22. Haney EF, Hunter HN, Matsuzaki K, Vogel HJ (2009) Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta 1788(8):1639–1655. https://doi.org/10.1016/j.bbamem.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Li Y, Han H, Miller DW, Wang G (2006) Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 128(17):5776–5785. https://doi.org/10.1021/ja0584875

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharjya S, Domadia PN, Bhunia A, Malladi S, David SA (2007) High-resolution solution structure of a designed peptide bound to lipopolysaccharide: transferred nuclear Overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry 46(20):5864–5874. https://doi.org/10.1021/bi6025159

    Article  CAS  PubMed  Google Scholar 

  25. Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47(6):451–463. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F

    Google Scholar 

  26. Pandit G, Biswas K, Ghosh S, Debnath S, Bidkar AP, Satpati P, Bhunia A, Chatterjee S (2020) Rationally designed antimicrobial peptides: insight into the mechanism of eleven residue peptides against microbial infections. Biochim Biophys Acta Biomembr 1862(4):183177. https://doi.org/10.1016/jbbamem.2020.183177

    Article  CAS  PubMed  Google Scholar 

  27. Pandit G, Chowdhury N, Mohid SA, Bidkar P, Bhunia A, Chatterjee S (2021) Effect of secondary structure and side chain length of hydrophobic amino-acid residues on antimicrobial activity and toxicity of 14- residue long de novo AMPs. ChemMedChem 16(2):355–367. https://doi.org/10.1002/cmdc.202000550

    Article  CAS  PubMed  Google Scholar 

  28. Porcelli F, Ramamoorthy A, Barany G, Veglia G (2013) On the role of NMR spectroscopy for characterization of antimicrobial peptides. Methods Mol Biol 1063:159–180. https://doi.org/10.1007/978-1-62703-583-5_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55. https://doi.org/10.1124/pr.55.1.2

    Article  CAS  PubMed  Google Scholar 

  30. Bhunia A, Domadia PN, Torres J, Hallock KJ, Ramamoorthy A, Bhattacharjya S (2010) NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J Biol Chem 285(6):3883–3895. https://doi.org/10.1074/jbc.M109.065672

    Article  CAS  PubMed  Google Scholar 

  31. Datta A, Ghosh A, Airoldi C, Sperandeo P, Mroue KH, Jiménez- Barbero J, Kundu P, Ramamoorthy A, Bhunia A (2015) Antimicrobial peptides: insights into membrane Permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Sci Rep 5:11951. https://doi.org/10.1038/srep11951

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee DK, Brender JR, Sciacca MF, Krishnamoorthy J, Yu C, Ramamoorthy A (2013) Lipid composition- dependent membrane fragmentation and pore- forming mechanisms of membrane disruption by pexiganan (MSI-78). Biochemistry 52(19):3254–3263. https://doi.org/10.1021/bi400087n

    Article  CAS  PubMed  Google Scholar 

  33. Patching SG (2014) Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta 1838(1 Pt A):43–55. https://doi.org/10.1016/j.bbamem.2013.04.028

    Article  CAS  PubMed  Google Scholar 

  34. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534. https://doi.org/10.1126/science.274.5292.1531

    Article  CAS  PubMed  Google Scholar 

  35. Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP (2011) Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278(5):687–703. https://doi.org/10.1111/j.1742-4658.2011.08004.x

    Article  CAS  PubMed  Google Scholar 

  36. Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal G (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7(9):738–745. https://doi.org/10.1038/nrd2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhattacharjya S (2016) NMR structures and interactions of antimicrobial peptides with lipopolysaccharide: connecting structures to functions. Curr Top Med Chem 16(1):4–15. https://doi.org/10.2174/1568026615666150703121943

    Article  CAS  PubMed  Google Scholar 

  38. Castanar L, Parella T (2015) Recent advances in small molecule NMR: improved HSQC and HSQMBC experiments. Ann Rep NMR Spectrosc 84:163–232. https://doi.org/10.1016/bs.arnmr.2014.10.004

    Article  CAS  Google Scholar 

  39. Bhattacharjya S, Ramamoorthy A (2009) Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J 276(22):6465–6473. https://doi.org/10.1111/j.1742-4658.2009.07357.x

    Article  CAS  PubMed  Google Scholar 

  40. Datta A, Kundu P, Bhunia A (2016) Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: structural insights into lipopolysaccharide binding. J Colloid Interface Sci 461:335–345. https://doi.org/10.1016/j.jcis.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  41. Mohid SA, Ghorai A, Ilyas H, Mroue KH, Narayanan G, Sarkar A, Ray SK, Biswas K, Bera AK, Malmsten M, Midya A, Bhunia A (2019) Application of tungsten Disulphide quantum dot- conjugated antimicrobial peptides in bioimaging and antimicrobial therapy. Colloids Surf B Biointerfaces 176:360–370. https://doi.org/10.1016/j.calsurfb.2019.01.02042

    Article  PubMed  Google Scholar 

  42. Brender JR, Krishnamoorthy J, Ghosh A, Bhunia A (2018) Binding moiety mapping by saturation transfer difference NMR. Methods Mol Biol 1824:49–65. https://doi.org/10.1007/978-1-4939-8630-9_4

    Article  CAS  PubMed  Google Scholar 

  43. Bhunia A, Bhattacharjya S, Chatterjee S (2011) Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 17(9–10):505–513. https://doi.org/10.1016/j.drudis.2011.12.01642

    Article  PubMed  Google Scholar 

  44. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38(12):1784–1788. https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q

    Google Scholar 

  45. Mühlhahn P, Bernhagen J, Czisch M, Georgescu J, Renner C, Ross A, Bucala R, Holak TA (1996) NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF). Protein Sci 5(10):2095–2103. https://doi.org/10.1002/pro.5560051016

    Article  PubMed  PubMed Central  Google Scholar 

  46. Becker W, Bhattiprolu KC, Gubensak N, Zangger K (2018) Investigating protein- ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem 19(8):895–906. https://doi.org/10.1002/cphc.201701253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct 33:387–413. https://doi.org/10.1146/annurev.biophys.33.110502.140306

    Article  CAS  PubMed  Google Scholar 

  48. Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411–415. https://doi.org/10.1103/PhysRev.92.411

    Article  CAS  Google Scholar 

  49. Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30:501–524. https://doi.org/10.1039/C2NP20104F

    Article  CAS  PubMed  Google Scholar 

  50. Struck AW, Axmann M, Pfefferle S, Drosten C, Meyer B (2012) A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antivir Res 94(3):288–296. https://doi.org/10.1016/j.antiviral.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  51. Campbell AP, Sykes BD (1993) The two-dimensional transferred nuclear Overhauser effect: theory and practice. Annu Rev Biophys Biomol Struct 22:99–122. https://doi.org/10.1146/annurev.bb.22.060193.000531

    Article  CAS  PubMed  Google Scholar 

  52. Carlomagno T (2005) Ligand-target interactions: what can we learn from NMR? Annu Rev Biophys Biomol Struct 34:245–266. https://doi.org/10.1146/annurev.biophys.34.040204.144419

    Article  CAS  PubMed  Google Scholar 

  53. Surya W, Li Y, Torres J (2018) Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr 1860(6):1309–1317. https://doi.org/10.1016/j.bbamem.2018.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95(1):1–6. https://doi.org/10.1016/0006-291x(80)90695-6

    Article  CAS  PubMed  Google Scholar 

  55. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123(25):6108–6117. https://doi.org/10.1021/ja0100120

    Article  CAS  PubMed  Google Scholar 

  56. Kemper S, Patel MK, Errey JC, Davis BG, Jones JA, Claridge TD (2010) Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments. J Magn Reson 203(1):1–10. https://doi.org/10.1016/j.jmr.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  57. Bhunia A, Bhattacharjya S (2011) Mapping residue- specific contacts of polymyxin B with lipopolysaccharide by saturation transfer difference NMR: insights into outer membrane disruption and endotoxin neutralization. Biopolymers 96(3):273–287. https://doi.org/10.1002/bip.21530

    Article  CAS  PubMed  Google Scholar 

  58. Biswas K, Ilyas H, Datta A, Bhunia A (2020) NMR assisted antimicrobial peptide designing: structure based modifications and functional correlation of a designed peptide VG16KRKP. Curr Med Chem 27(9):1387–1404. 10,2174/0929867326666190624090817

    Google Scholar 

  59. Loeches IM, Dale GE, Torres A (2018) Murepavadin: a new antibiotic class in the pipeline. Expert Rev Anti-Infect Ther 16(4):259–268. https://doi.org/10.1080/14787210.2018.1441024

    Article  CAS  Google Scholar 

  60. Bhunia A, Ramamoorthy A, Bhattacharjya S (2009) Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy. Chemistry 15(9):2036–2040. https://doi.org/10.1002/chem.200802635

    Article  CAS  PubMed  Google Scholar 

  61. Datta A, Bhattacharyya D, Singh S, Ghosh A, Schmidtchen A, Malmsten M, Bhunia A (2016) Role of aromatic amino acids in lipopolysaccharide and membrane interactions of antimicrobial peptides for use in plant disease control. J Biol Chem 291(25):13301–13317. https://doi.org/10.1074/jbc.M116.719575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulse-field gradients. J Magn Reson 112(2):275–279. https://doi.org/10.1006/jmra.1995.1047

    Article  CAS  Google Scholar 

  63. Piotto M, Saudek V, Sklenár V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665. https://doi.org/10.1007/BF02192855

    Article  CAS  PubMed  Google Scholar 

  64. Marion D, Ikura M, Tschudin R, Bax A (1969) Rapid recording of 2D NMR spectra without phase cycling. Application to study of hydrogen exchange in proteins. J Magn Reson 85:393–399. https://doi.org/10.1016/0022-2364(89)90152-2

    Article  Google Scholar 

  65. Mukherjee S, Harikishore A, Bhunia A (2021) Targeting C-terminal helical bundle of NCOVID19 envelope (E) protein. Int J Biol Macromol 175:131–139. https://doi.org/10.1016/j.ijbiomac.2021.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chowdhury R, Ilyas H, Ghosh A, Ali H, Ghorai A, Midya A, Jana NR, Das S, Bhunia A (2017) Multivalent gold nanoparticle-peptide conjugates for targeting intracellular bacterial infections. Nanoscale 9(37):14074–14093. https://doi.org/10.1039/c7nr04062h

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Biswas, K., Bhunia, A. (2022). Probing the Functional Interaction Interface of Lipopolysaccharide and Antimicrobial Peptides: A Solution-State NMR Perspective. In: Sperandeo, P. (eds) Lipopolysaccharide Transport. Methods in Molecular Biology, vol 2548. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2581-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2581-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2580-4

  • Online ISBN: 978-1-0716-2581-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics