Skip to main content

High-Throughput Plasma Proteomic Profiling

  • Protocol
  • First Online:
Clinical Applications of Mass Spectrometry in Biomolecular Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2546))

Abstract

Plasma and serum are rich sources of proteins that are commonly used for clinical proteome profiling and biomarkers discovery. However, high-throughput plasma proteome profiling and quantitative analysis using mass spectrometry are challenging because of the large dynamic range of protein abundance and complexity. To overcome these challenges, we developed a convenient high-throughput workflow of depleted plasma using the 4D-Proteomics feature of the Bruker timsTOF Pro mass spectrometer with data-dependent (PASEF) and data-independent acquisition (diaPASEF) method that can potentially be used in a clinical proteome profiling and biomarker discoveries. This workflow is robust, optimal for high throughput, high proteome depth, and is reproducible. In our sample preparation steps, we used immuno-depletion steps to remove high-abundance plasma proteins, and without any further cleanup steps, we can use depleted plasma samples directly for enzymatic digestion. Immuno-depletion steps and 4D-Proteomics features of timsTOF Pro increase the plasma proteome depth, and accuracy with the identification of >800 protein groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56:177–185

    Article  CAS  PubMed  Google Scholar 

  2. Anderson NL (2014) Six decades searching for meaning in the proteome. J Proteome 107:24–30

    Article  CAS  Google Scholar 

  3. Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (2016) Plasma proteome profiling to assess human health and disease. Cell Syst. 2(3):185–195

    Article  CAS  PubMed  Google Scholar 

  4. Geyer PE, Holdt LM, Teupser D, Mann M (2017) Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol 13(9):942

    Article  PubMed  PubMed Central  Google Scholar 

  5. Geyer PE, Arend FM, Doll S, Louiset ML, Virreira WS, Mülle-Reif JB, Torun FM, Weigand M, Eichhorn P, Bruegel M, Strauss MT, Holdt LM, Mann M, Teupser D (2021) High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion. EMBO Mol Med 13(8):e14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meier F, Park MA, Mann M (2021) Trapped ion mobility spectrometry (TIMS) and parallel accumulation – serial fragmentation (PASEF) in proteomics. Mol Cell Proteomics 17:100138

    Article  Google Scholar 

  7. Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M, Goedecke N, Decker J, Kosinski T, Park MA, Bache N, Hoerning O, Cox J, Räther O, Mann M (2018) Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol Cell Proteomics 17(12):2534–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meier F, Brunner AD, Frank M, Ha A, Bludau I, Voytik E, Kaspar-Schoenefeld S, Lubeck M, Raether O, Bache N, Aebersold R, Collins BC, Roest HL, Mann M (2020) diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Meth 17:1229–1236

    Article  CAS  Google Scholar 

  9. Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11(3):319–324. https://doi.org/10.1038/nmeth.2834

  10. Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng L-Y, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14(5):1400–1410. https://doi.org/10.1074/mcp.M114.044305

Download references

Acknowledgments

We thank 2P30 CA013696-45 Cancer Center Support Grant for providing support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soni, R.K. (2022). High-Throughput Plasma Proteomic Profiling. In: Garg, U. (eds) Clinical Applications of Mass Spectrometry in Biomolecular Analysis. Methods in Molecular Biology, vol 2546. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2565-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2565-1_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2564-4

  • Online ISBN: 978-1-0716-2565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics