Skip to main content

Tracing and Manipulating Drosophila Cell Lineages Based on CRISPR: CaSSA and CLADES

  • Protocol
  • First Online:
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2540))

  • 1546 Accesses

Abstract

Cell lineage defines the mitotic connection between cells that make up an organism. Mapping these connections in relation to cell identity offers an extraordinary insight into the mechanisms underlying normal and pathological development. The analysis of molecular determinants involved in the acquisition of cell identity requires gaining experimental access to precise parts of cell lineages. Recently, we have developed CaSSA and CLADES, a new technology based on CRISPR that allows targeting and labeling specific lineage branches. Here we discuss how to better exploit this technology for lineage studies in Drosophila, with an emphasis on neuronal specification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urbach R, Schnabel R, Technau GM (2003) The pattern of neuroblast formation, mitotic domains and proneural gene expression during early brain development in Drosophila. Development 130:3589–3606

    Article  CAS  Google Scholar 

  2. Yu H-H, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, Ding P, Kao J-C, Wu GY-Y, Peng H et al (2013) Clonal development and organization of the adult Drosophila central brain. Curr Biol 23:633–643

    Article  CAS  Google Scholar 

  3. Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076

    Article  CAS  Google Scholar 

  4. Lai S-L, Awasaki T, Ito K, Lee T (2008) Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135:2883–2893

    Article  CAS  Google Scholar 

  5. Jefferis GSXE, Marin EC, Stocker RF, Luo L (2001) Target neuron prespecification in the olfactory map of drosophila. Nature 414:204–208

    Article  CAS  Google Scholar 

  6. Bhargava R, Onyango DO, Stark JM (2016) Regulation of single-strand annealing and its role in genome maintenance. Trends Genet 32:566–575

    Article  CAS  Google Scholar 

  7. Garcia-Marques J, Yang CP, Espinosa-Medina I, Mok K, Koyama M, Lee T (2019) Unlimited genetic switches for cell-type-specific manipulation. Neuron 104:227–238.e7

    Article  CAS  Google Scholar 

  8. Garcia-Marques J, Espinosa-Medina I, Ku K, Yang C, Koyama M, Yu H, Lee T (2020) A programmable sequence of reporters for lineage analysis. Nat Neurosci 23:1618–1628

    Article  CAS  Google Scholar 

  9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (80) 337:816–821

    Article  CAS  Google Scholar 

  10. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586

    Article  CAS  Google Scholar 

  11. Awasaki T, Kao C-F, Lee Y-J, Yang C-P, Huang Y, Pfeiffer BD, Luan H, Jing X, Huang Y-F, He Y et al (2014) Making Drosophila lineage–restricted drivers via patterned recombination in neuroblasts. Nat Neurosci 17:631–637

    Article  CAS  Google Scholar 

  12. Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349

    Article  CAS  Google Scholar 

  13. Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, Dickson BJ, Stark A (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512:91–95

    Article  CAS  Google Scholar 

  14. Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001

    Article  CAS  Google Scholar 

  15. Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin C-C, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237

    Article  CAS  Google Scholar 

  16. Dionne H, Hibbard KL, Cavallaro A, Kao J-C, Rubin GM (2018) Genetic reagents for making Split-GAL4 lines in Drosophila. Genetics 209:31–35

    Article  CAS  Google Scholar 

  17. Tirian, L., and Dickson, B.J. (2017). The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. BioRxiv

    Google Scholar 

  18. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    Article  CAS  Google Scholar 

  19. Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436

    Article  CAS  Google Scholar 

  20. Venken KJT, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA et al (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743

    Article  CAS  Google Scholar 

  21. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci 100:12871–12876

    Article  CAS  Google Scholar 

  22. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in genie. J Comput Biol 4:311–323

    Article  CAS  Google Scholar 

  23. Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-Strand break repair. Mol Cell Biol 20:5300–5309

    Article  CAS  Google Scholar 

  24. Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE (2002) Recovery from checkpoint-mediated arrest after repair of a double-Strand break requires Srs2 helicase. Mol Cell 10:373–385

    Article  CAS  Google Scholar 

  25. Al-Minawi AZ, Saleh-Gohari N, Helleday T (2007) The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells. Nucleic Acids Res 36:1–9

    Article  Google Scholar 

  26. Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, Nye CH, Haurwitz RE, Beisel CL, May AP, Barrangou R (2014) Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell 56:333–339

    Article  CAS  Google Scholar 

  27. Chen D, McKearin DM (2003) A discrete transcriptional silencer in the bam gene determines asymmetric division of the drosophila germline stem cell. Development 130:1159–1170

    Article  CAS  Google Scholar 

  28. White-Cooper H (2012) Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the drosophila testis. Spermatogenesis 2:11–22

    Article  Google Scholar 

  29. Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L (2016) Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep 14:1555–1566

    Article  CAS  Google Scholar 

  30. Yu H-H, Chen C-H, Shi L, Huang Y, Lee T (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953

    Article  CAS  Google Scholar 

  31. Lin S, Kao C-F, Yu H-H, Huang Y, Lee T (2012) Lineage analysis of drosophila lateral antennal lobe neurons reveals notch-dependent binary temporal fate decisions. PLoS Biol 10:e1001425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Garcia-Marques or Tzumin Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garcia-Marques, J., Lee, T. (2022). Tracing and Manipulating Drosophila Cell Lineages Based on CRISPR: CaSSA and CLADES. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 2540. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2541-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2541-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2540-8

  • Online ISBN: 978-1-0716-2541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics