Skip to main content

Advances in Somatic Embryogenesis in Vanilla (Vanilla planifolia Jacks.)

  • Protocol
  • First Online:
Somatic Embryogenesis

Abstract

Somatic embryogenesis is an in vitro plant morphogenetic process due to cell totipotentiality to induce shoot regeneration. To induce this proliferation pathway, we used auxins such as 2,4-dichlorophenoxyacetic acid in combination with cytokinins. There are numerous somatic embryogenesis protocols for a great diversity of plants, including orchids, but none has been yet reported in Vanilla planifolia. Vanilla (V. planifolia) is propagated mainly asexually through cuttings. Under in vitro conditions, it is propagated asexually through direct and indirect organogenesis involving the use of various plant growth regulators in different concentrations. The cell response depends on explant type, culture medium used, and incubation conditions. Direct organogenesis involves de novo formation from differentiated cells; the indirect pathway develops from cell dedifferentiation that produces an explant called “callus.” In most cases, this type of cell regeneration uses Benzyladenine. The explants most used in this pathway are shoots, roots, and protocorms, although some studies report the use of other types of explants, including leaves and seeds. Somatic embryogenesis in vanilla has been poorly studied partly because of the recalcitrance of this species. This work mentioned the advances in the in vitro morphogenesis of V. planifolia, mentioning the advantages and disadvantages of each morphogenetic pathway and its characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rose RJ, Song Y (2017) Somatic embryogenesis, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  2. Thorpe TA (1994) Morphogenesis and regeneration. Plant Cell Tissue Cult 19:17–36. https://doi.org/10.1007/978-94-017-2681-8_2

    Article  Google Scholar 

  3. Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis: fundamental aspects and applications, 1st edn. Springer International Publishing, New York

    Book  Google Scholar 

  4. Gao F, Peng C, Wang H, Shen H, Yang L (2021) Selection of culture conditions for callus induction and proliferation by somatic embryogenesis of Pinus koraiensis. J For Res 32:483–491. https://doi.org/10.1007/s11676-020-01147-1

    Article  CAS  Google Scholar 

  5. Gao F, Peng C, Wang H, Nikolaevna I, Mikhaylovich A, Shen H, Yang L (2020) Key techniques for somatic embryogenesis and plant regeneration of Pinus koraiensis. Forests 11. https://doi.org/10.3390/F11090912

  6. Lelu-Walter MA, Gautier F, Eliášová K, Sanchez L, Teyssier C, Lomenech AM, Le Metté C, Hargreaves C, Trontin JF, Reeves C (2018) High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii [Mirb.]. Plant Cell Tissue Organ Cult 132:137–155. https://doi.org/10.1007/s11240-017-1318-0

    Article  CAS  Google Scholar 

  7. Abrahamsson M, Valladares S, Merino I, Larsson E, von Arnold S (2017) Degeneration pattern in somatic embryos of Pinus sylvestris L. In Vitro Cell Dev Biol Plant 53:86–96. https://doi.org/10.1007/s11627-016-9797-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salaj T, Klubicová K, Matusova R, Salaj J (2019) Somatic embryogenesis in selected conifer trees Pinus nigra arn. And abies hybrids. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00013

  9. Soonthornkalump S, Nakkanong K, Meesawat U (2019) In vitro cloning via direct somatic embryogenesis and genetic stability assessment of Paphiopedilum niveum (Rchb.F.) stein: the endangered Venus’s slipper orchid. In Vitr Cell Dev Biol Plant 55:265–276. https://doi.org/10.1007/s11627-019-09981-7

    Article  CAS  Google Scholar 

  10. Sherif NA, Franklin Benjamin JH, Senthil Kumar T, Rao MV (2018) Somatic embryogenesis, acclimatization and genetic homogeneity assessment of regenerated plantlets of Anoectochilus elatus Lindl., an endangered terrestrial jewel orchid. Plant Cell Tissue Organ Cult 132:303–316. https://doi.org/10.1007/s11240-017-1330-4

    Article  CAS  Google Scholar 

  11. Parthibhan S, Rao MV, Teixeira da Silva JA, Senthil Kumar T (2018) Somatic embryogenesis from stem thin cell layers of Dendrobium aqueum. Biol Plant 62:439–450. https://doi.org/10.1007/s10535-018-0769-4

    Article  CAS  Google Scholar 

  12. Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S (2017) Role of silicon on plant–pathogen interactions. Front Plant Sci 8:1–14. https://doi.org/10.3389/fpls.2017.00701

    Article  Google Scholar 

  13. Shen HJ, Chen JT, Chung HH, Chang WC (2018) Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore ‘Elsa.’. Bot Stud 59:4. https://doi.org/10.1186/s40529-018-0220-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mose W, Daryono BS, Indrianto A, Purwantoro A, Semiarti E (2020) Direct somatic embryogenesis and regeneration of an indonesian orchid Phalaenopsis amabilis (L.) Blume under a variety of plant growth regulators, light regime, and organic substances. Jordan J Biol Sci 13:509–518

    CAS  Google Scholar 

  15. Mose W, Indrianto A, Purwantoro A, Semiarti E (2017) The influence of Thidiazuron on direct somatic embryo formation from various types of explant in Phalaenopsis amabilis (L.) Blume orchid. HAYATI J Biosci 24:201–205. https://doi.org/10.1016/j.hjb.2017.11.005

    Article  Google Scholar 

  16. Gallage NJ, Møller BL (2017) Vanilla: the most popular flavour. Biotechnol Nat Prod:3–24. https://doi.org/10.1007/978-3-319-67903-7_1

  17. Manokari M, Priyadharshini S, Jogam P, Dey A, Shekhawat MS (2021) Meta-topolin and liquid medium mediated enhanced micropropagation via ex vitro rooting in Vanilla planifolia jacks. Ex Andrews. Plant Cell Tissue Organ Cult:69–82. https://doi.org/10.1007/s11240-021-02044-z

  18. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Luna-Sánchez IJ (2017) Light quality affects growth and development of in vitro plantlet of Vanilla planifolia jacks. South African J Bot 109:288–293. https://doi.org/10.1016/j.sajb.2017.01.205

    Article  Google Scholar 

  19. Yeh C-H, Chen K-Y, Lee Y-I (2021) Asymbiotic germination of Vanilla planifolia in relation to the timing of seed collection and seed pretreatments. Bot Stud 62:12. https://doi.org/10.1186/s40529-021-00311-y

    Article  CAS  Google Scholar 

  20. Ramos-Castellá AL, Iglesias-Andreu LG, Martínez-Castillo J, Ortíz-García M, Andueza-Noh RH, Octavio-Aguilar P, Luna-Rodríguez M (2016) Evaluation of molecular variability in germplasm of vanilla (Vanilla planifolia G. Jackson in Andrews) in Southeast Mexico: implications for genetic improvement and conservation. Plant Genet Resour:1–11. https://doi.org/10.1017/S1479262115000660

  21. Ramírez-Mosqueda MA, Iglesias-Andreu LG (2015) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia jacks. Plant Cell Tissue Organ Cult 123:657–664. https://doi.org/10.1007/s11240-015-0868-2

    Article  Google Scholar 

  22. Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia jacks. In Vitr Cell Dev Biol Plant 52:154–160. https://doi.org/10.1007/s11627-015-9735-4

    Article  Google Scholar 

  23. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Favián-Vega E, Teixeira da Silva JA, Leyva-Ovalle OR, Murguía-González J (2019) Morphogenetic stability of variegated Vanilla planifolia jacks. Plants micropropagated in a temporary immersion system (TIB®). Rend Lincei 30:603–609. https://doi.org/10.1007/s12210-019-00813-9

    Article  Google Scholar 

  24. Tan BC, Chin CF, Liddell S, Alderson P (2013) Proteomic analysis of callus development in Vanilla planifolia Andrews. Plant Mol Biol Rep 31:1220–1229. https://doi.org/10.1007/s11105-013-0590-3

    Article  CAS  Google Scholar 

  25. Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82. https://doi.org/10.1186/1471-2229-10-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Sáenz L, Córdova I (2018) Preliminary molecular detection of the somatic embryogenesis receptor - like kinase ( VpSERK ) and knotted - like homeobox ( VpKNOX1 ) genes during in vitro morphogenesis of Vanilla planifolia Jacks. 3 Biotech 8:1–3. https://doi.org/10.1007/s13205-018-1112-7

    Article  Google Scholar 

  27. Rodolphe G, Severine B, Michel G, Pascale B (2011) Biodiversity and evolution in the vanilla genus. In: The Dynamical Processes of Biodiversity - Case Studies of Evolution and Spatial Distribution. InTech, London, pp 1–27

    Google Scholar 

  28. Khoyratty S, Kodja H, Verpoorte R (2018) Vanilla flavor production methods: a review. Ind Crop Prod 125:433–442. https://doi.org/10.1016/j.indcrop.2018.09.028

    Article  CAS  Google Scholar 

  29. Baqueiro-Peña I, Guerrero-Beltrán JÁ (2017) Vanilla (Vanilla planifolia Andr.), its residues and other industrial by-products for recovering high value flavor molecules: a review. J Appl Res Med Aromat Plants 6:1–9. https://doi.org/10.1016/j.jarmap.2016.10.003

    Article  Google Scholar 

  30. Ramachandra RS, Ravishankar G (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304. https://doi.org/10.1002/1097-0010(200002)80:3<289::aid-jsfa543>3.0.co;2-2

    Article  Google Scholar 

  31. Sinha AK, Sharma UK, Sharma N (2008) A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. Int J Food Sci Nutr 59:299–326. https://doi.org/10.1080/09687630701539350

    Article  CAS  PubMed  Google Scholar 

  32. Soto-Arenas MA, Dressler R (2010) A revision of the Mexican and central American species of vanilla plumier ex miller with a characterization of their its tegion of the nuclear ribosomal DNA. Lankesteriana 9:285–354

    Google Scholar 

  33. FAOSTAT (2020) Producción y comercio de vainilla: país por producto. http://www.fao.org/faostat/en/#data/QC. Accessed 17 Oct 2020

  34. Chandran S, Thomas P (2009) Assorted response of mutated variants of Vanilla planifolia Andr. Towards drought. Acta Physiol Plant 31:1023–1029. https://doi.org/10.1007/s11738-009-0321-4

    Article  Google Scholar 

  35. Iglesias-Andreu L, Ramos-Castellá AL, Palafox Chávez M de L (2021) In vitro selection of irradiated plantlets of Vanilla planifolia jacks. In the face of water stress. Res Sq 1–12 . https://doi.org/10.21203/RS.3.RS-172096/V1

  36. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Luna-Rodríguez M, Castro-Luna AA (2015) In vitro phytotoxicity of culture filtrates of fusarium oxysporum f. sp. vanillae in Vanilla planifolia jacks. Sci Hortic (Amsterdam) 197:573–578. https://doi.org/10.1016/j.scienta.2015.10.019

    Article  CAS  Google Scholar 

  37. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Teixeira da Silva JA, Luna-Rodríguez M, Noa-Carrazana JC, Bautista-Aguilar JR, Leyva-Ovalle OR, Murguía-González J (2019) In vitro selection of vanilla plants resistant to fusarium oxysporum f. sp. vanillae. Acta Physiol Plant 41. https://doi.org/10.1007/s11738-019-2832-y

  38. Khoyratty S, Dupont J, Lacoste S, Palama LT, Choi HY, Kim KH, Payet B, Grisoni M, Fouillaud M, Verpoorte R, Kodja H (2015) Fungal endophytes of Vanilla planifolia across Réunion Island: isolation, distribution and biotransformation. BMC Plant Biol 15:1–19. https://doi.org/10.1186/s12870-015-0522-5

    Article  Google Scholar 

  39. Soto-Arenas MA, Cribb PJ (2010) A new infrageneric classification and synopsis of the genus vanilla plum. Ex mill. (Orchidaceae: Vanillinae). Lankesteriana 9:355–398

    Google Scholar 

  40. Hernández-Hernández J (2018) Mexican vanilla production. In: Havkin-frenkel D, Belanger F (eds) Handbook of vanilla science and technology, 2nd edn. Wiley-Blackwell, New Jersey, USA, pp 1–26

    Google Scholar 

  41. Pinaria AG, Liew ECY, Burgess LW (2010) Fusarium species associated with vanilla stem rot in Indonesia. Australas Plant Pathol 39:176–183. https://doi.org/10.1071/AP09079

    Article  Google Scholar 

  42. Mushimiyimana I, Asiimwe T, Dusabe C, Gatunzi F (2011) In vitro propagation of vanilla in Rwanda. Rwanda J 24:67–74

    Google Scholar 

  43. Nair RR, Ravindran PN (1994) Somatic association of chromosomes and other mitotic abnormalities in Vanilla planifolia (Andrews). Caryologia 47:65–73. https://doi.org/10.1080/00087114.1994.10797284

    Article  Google Scholar 

  44. Yam TW, Arditti J (2017) Micropropagation of orchids. Sci Hortic 122:507–520

    Google Scholar 

  45. Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 155–203

    Chapter  Google Scholar 

  46. Nhut DT, Van LB, Thorpe T, Van KTT (2003) Morphogenesis by thin cell layers. In: Nhut DT, Teixeira da SJA, Van LB, Thorpe TA, Van KTT (eds) Thin cell layer culture system: regeneration and transformation applications, 1st edn. Springer, Netherlands, pp 473–493

    Chapter  Google Scholar 

  47. Sultana M, Gangopadhyay G (2020) In silico structural analysis and ligand - binding predictions of a few developmental stage specific - proteins during in vitro morphogenesis in vanilla. Vegetos. https://doi.org/10.1007/s42535-020-00140-7

  48. Gantait S, Kundu S (2017) In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiol Plant 39:1–19. https://doi.org/10.1007/s11738-017-2462-1

    Article  CAS  Google Scholar 

  49. Pebam B, Kishor R, Narmatha Bai V (2016) In vitro immature embryo germination and propagation of Vanda stangeana Rchb. F., an orchid endemic to India. Hortic Environ Biotechnol 57:615–624. https://doi.org/10.1007/s13580-016-0051-7

    Article  CAS  Google Scholar 

  50. Semiarti E (2018) Orchid biotechnology for Indonesian orchids conservation and industry. AIP Conf Proc 2002:1–6. https://doi.org/10.1063/1.5050118

    Article  CAS  Google Scholar 

  51. Stange L (1965) Plant cell differentiation. Annu Rev Plant Physiol 16:119–140. https://doi.org/10.1146/annurev.pp.16.060165.001003

    Article  CAS  Google Scholar 

  52. Grout B (2017) General principles of tissue culture, 2nd Edició. Elsevier, Copenhagen, Taastrup, Dinamarca

    Google Scholar 

  53. Loyola-Vargas VM, De-la-Peña C, Galaz-Ávalos RM, Quiroz-Figueroa FR (2008) Plant tissue culture. In: Molecular biomethods handbook, 2nd edn. Springer Science & Business Media, New York, pp 875–904

    Chapter  Google Scholar 

  54. Small CC, Degenhardt D (2018) Plant growth regulators for enhancing revegetation success in reclamation : a review. Ecol Eng 118:43–51. https://doi.org/10.1016/j.ecoleng.2018.04.010

    Article  Google Scholar 

  55. Giannakoula AE, Ilias IF, Dragišić Maksimović JJ, Maksimović VM, Živanović BD (2012) The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. J Food Compos Anal 28:46–53. https://doi.org/10.1016/j.jfca.2012.06.005

    Article  CAS  Google Scholar 

  56. Yu J, Liu W, Liu J, Qin P, Xu L (2017) Auxin control of root organogenesis from callus in tissue culture. Front Plant Sci 8:1–4. https://doi.org/10.3389/fpls.2017.01385

    Article  Google Scholar 

  57. Mishra AK, Tiwari KN, Mishra P, Tiwari SK, Mishra SK, Saini R (2019) Effect of cytokinin and MS medium composition on efficient shoot proliferation of Nyctanthes arbor-tristis L. through cotyledonary node explant and evaluation of genetic fidelity and antioxidant capacity of regenerants. South African J Bot 127:284–292. https://doi.org/10.1016/j.sajb.2019.09.008

    Article  CAS  Google Scholar 

  58. Sul IIIW, Korban SS (2004) Effects of salt formulations, carbon sources, cytokinins, and auxin on shoot organogenesis from cotyledons of Pinus pinea L. Plant Growth Regul 43:197–205. https://doi.org/10.1023/B:GROW.0000046013.47892.4f

    Article  CAS  Google Scholar 

  59. Zhao GW, Jiang XW (2014) Roles of gibberellin and auxin in promoting seed germination and seedling vigor in Pinus massoniana. For Sci 60:367–373. https://doi.org/10.5849/forsci.12-143

    Article  Google Scholar 

  60. Visser C, Qureshi JA, Gill R, Saxena PK (1992) Morphoregulatory role of Thidiazuron. Plant Physiol 99:1704–1707. https://doi.org/10.1104/pp.99.4.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aoki MM, Kisiala AB, Rahman T, Morrison EN, Emery RJN (2021) Cytokinins are pervasive among common in vitro culture media: an analysis of their forms, concentrations and potential sources. J Biotechnol 334:43–46. https://doi.org/10.1016/J.JBIOTEC.2021.05.005

    Article  CAS  PubMed  Google Scholar 

  62. Renuga G, Saravana KSN (2014) Induction of vanillin related compounds from nodal explants of Vanilla planifolia using BAP and kinetin. Asian J Plant Sci Res 4:53–61

    Google Scholar 

  63. Sreedar RV, Venkatachalam L, Bhagyalakshmi N (2007) Genetic fidelity of long-term micropropagated shoot cultures of vanilla (Vanilla planifolia Andrews) as assessed by molecular markers. Biotechnol J 2:1007–1013. https://doi.org/10.1002/biot.200600229

    Article  CAS  Google Scholar 

  64. Divakaran M, Pillai GS, Babu KN, Peter KV (2008) Isolation and fusion of protoplasts in vanilla species. Curr Sci 94:115–120

    CAS  Google Scholar 

  65. Gantait S, Mandal N, Bhattacharyya S (2009) Mass multiplication of Vanilla planifolia with pure genetic identity confirmed by ISSR. Int J Plant Dev Biol 3(1):18–23

    Google Scholar 

  66. George PS, Ravishankar GA (1997) In vitro multiplication of Vanilla planifolia using axillary bud explants. Plant Cell Rep 16:490–494. https://doi.org/10.1007/s002990050266

    Article  CAS  PubMed  Google Scholar 

  67. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  68. Geetha S, Shetty A (2000) In vitro propagation of Vanilla planifolia, a tropical orchid. Curr Sci:886–889

    Google Scholar 

  69. Giridhar P, Obul Reddy B, Ravishankar GA (2001) Silver nitrate influences in vitro shoot multiplication and root formation in Vanilla planifolia Andr. Curr Sci 81:1166–1170

    CAS  Google Scholar 

  70. Retheesh ST, Bhat AI (2011) Genetic transformation and regeneration of transgenic plants from protocorm-like bodies of vanilla (Vanilla planifolia Andrews) using agrobacterium tumefaciens. J Plant Biochem Biotechnol 20:262–269. https://doi.org/10.1007/s13562-011-0057-2

  71. Giridhar P, Ravishankar GA (2004) Efficient micropropagation of Vanilla planifolia Andr. Under influence of thidiazuron, zeatin and coconut milk. Indian J Biotechnol 3:113–118

    CAS  Google Scholar 

  72. Velankar MH, Heble MR (2004) Biotransformation of externally added vanillin related compounds by multiple shoot cultures of Vanilla planifolia L. J Plant Biochem Biotechnol 13:153–156. https://doi.org/10.1007/BF03263213

    Article  CAS  Google Scholar 

  73. Divakaran M, Babu KN, Peter KV (2006) Conservation of vanilla species, in vitro. Sci Hortic (Amsterdam) 110:175–180. https://doi.org/10.1016/j.scienta.2006.07.003

    Article  CAS  Google Scholar 

  74. Kalimuthu K, Senthilkumar R, Murugalatha N (2006) Regeneration and mass multiplication of Vanilla planifolia Andr . – a tropical orchid. Curr Sci 91:1401–1403

    CAS  Google Scholar 

  75. Lee-espinosa HE, Biolo FC, Laguna-cerda A, El C, Agrı FC, Auto U, Mijangos-corte JO, Barahona-pe LF (2008) In vitro clonal propagation of vanilla (Vanilla planifolia ‘Andrews’). HortScience 43:454–458

    Article  Google Scholar 

  76. Abebe Z, Mengesha A, Teressa A, Tefera W (2009) Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. African J Biotechnol 8:6817–6821. https://doi.org/10.4314/ajb.v8i24.68674

    Article  CAS  Google Scholar 

  77. Retheesh ST, Bhat AI (2010) Simultaneous elimination of cucumber mosaic virus and cymbidium mosaic virus infecting Vanilla planifolia through meristem culture. Crop Prot 29:1214–1217. https://doi.org/10.1016/j.cropro.2010.05.017

    Article  Google Scholar 

  78. Ahmad N, Faisal M (2018) Thidiazuron: from urea derivative to plant growth regulator. Springer, New York, pp 1–491. https://doi.org/10.1007/978-981-10-8004-3

    Book  Google Scholar 

  79. Tan BC, Chin CF, Alderson P (2011) Optimisation of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Andrews. Plant Cell Tissue Organ Cult 105:457–463. https://doi.org/10.1007/s11240-010-9866-6

    Article  CAS  Google Scholar 

  80. Inderiati S, Ratnawati SD (2019) In vitro propagation of vanilla (vanilla Planifolia Andr.) on different concentration of Cytokinins. Agroplantae 8:14–17

    Google Scholar 

  81. de Oliveira SOD, Sayd RM, Balzon TA, Scherwinski-Pereira JE (2013) A new procedure for in vitro propagation of vanilla (Vanilla planifolia) using a double-phase culture system. Sci Hortic (Amsterdam) 161:204–209. https://doi.org/10.1016/j.scienta.2013.06.039

    Article  CAS  Google Scholar 

  82. Tan BC, Chin CF, Alderson P (2013) Effects of sodium nitroprusside on shoot multiplication and regeneration of Vanilla planifolia Andrews. In Vitro Cell Dev Biol Plant 49:626–630. https://doi.org/10.1007/s11627-013-9526-8

    Article  CAS  Google Scholar 

  83. Jing GF, Ab Razak WNAW, Ab Rahman Z, Subramaniam S (2014) The effect of thin cell layer system in Vanilla planifolia in vitro culture. Curr Bot 5:22–25

    Google Scholar 

  84. Nhut DT, van Le B, Van KTT (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa l .) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157:559–565. https://doi.org/10.1016/S0176-1617(00)80112-1

    Article  CAS  Google Scholar 

  85. Henrique J, Padilha D, Lopes L, Ribas F, Amano É, Quoirin M (2015) Somatic embryogenesis in Acrocomia aculeata Jacq. (Lodd.) ex Mart using the thin cell layer technique. Acta Bot Brasilica 29:516–523. https://doi.org/10.1590/0102-33062015abb0109

    Article  Google Scholar 

  86. Scherwinski-Pereira JE, da Guedes RS, Fermino JPC, Silva TL, Costa FHS (2010) Somatic embryogenesis and plant regeneration in oil palm using the thin cell layer technique. In Vitro Cell Dev Biol:378–385. https://doi.org/10.1007/s11627-010-9279-6

  87. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Armas-Silva AA, Cruz-Gutiérrez EJ, de la Torre-Sánchez JF, Leyva-Ovalle OR, Galán-Páez CM (2018) Effect of the thin cell layer technique in the induction of somatic embryos in Pinus patula Schl. et Cham. J For Res 30:1535–1539. https://doi.org/10.1007/s11676-018-0663-0

    Article  CAS  Google Scholar 

  88. Ramos-Castellá A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa H (2014) Improved propagation of vanilla (Vanilla planifolia jacks. Ex Andrews) using a temporary immersion system. In Vitro Cell Dev Biol Plant 50:576–581. https://doi.org/10.1007/s11627-014-9602-8

    Article  CAS  Google Scholar 

  89. Ramírez MA, Jericó M, Bello JB (2021) SETIS ™ bioreactor increases in vitro multiplication and shoot length in vanilla (Vanilla planifolia jacks. Ex Andrews). Acta Physiol Plant 43:1–8. https://doi.org/10.1007/s11738-021-03227-z

    Article  CAS  Google Scholar 

  90. Bello-Bello JJ, Martínez-Estrada E, Caamal-Velázquez JH, Morales-Ramos V (2016) Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African J Biotechnol 15:272–277. https://doi.org/10.5897/ajb2015.14662

    Article  CAS  Google Scholar 

  91. Hernández-Ramírez F, Dolce N, Flores-Castaños O, Rascón MP, Ángeles-Álvarez G, Folgado R, González-Arnao MT (2020) Advances in cryopreservation of vanilla (Vanilla planifolia jacks.) shoot-tips: assessment of new biotechnological and cryogenic factors. In Vitro Cell Dev Biol Plant 56:236–246. https://doi.org/10.1007/s11627-020-10069-w

    Article  CAS  Google Scholar 

  92. Havkin-Frenkel D, Podstolski A, Knorr D (1996) Effect of light on vanillin precursors formation by in vitro cultures of Vanilla planifolia. Plant Cell Tissue Organ Cult 45:133–136. https://doi.org/10.1007/BF00048756

    Article  CAS  Google Scholar 

  93. Divakaran M, Babu KN (2009) Micropropagation and in vitro conservation of vanilla (Vanilla planifolia Andrews). Methods Mol Biol 547:129–138. https://doi.org/10.1007/978-1-60327-287-2_11

    Article  PubMed  Google Scholar 

  94. Janarthanam B, Seshadri S (2008) Plantlet regeneration from leaf derived callus of Vanilla planifolia Andr. In Vitro Cell Dev Biol Plant 44:84–89. https://doi.org/10.1007/s11627-008-9123-4

    Article  CAS  Google Scholar 

  95. Kodja H, Noirot M, Khoyratty SS, Limbada H, Verpoorte R, Palama TL (2015) Biochemical characterization of embryogenic calli of Vanilla planifolia in response to two years of thidiazuron treatment. Plant Physiol Biochem 96:337–344. https://doi.org/10.1016/j.plaphy.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  96. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Sáenz L, Córdova I (2018) Preliminary molecular detection of the somatic embryogenesis receptor-like kinase (VpSERK) and knotted-like homeobox (VpKNOX1) genes during in vitro morphogenesis of Vanilla planifolia jacks. 3. Biotech 8:7–9. https://doi.org/10.1007/s13205-018-1112-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Ramírez-Mosqueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramírez-Mosqueda, M.A., Bello-Bello, J.J., Armas-Silva, A.A., Rodríguez-Deméneghi, M.V., Martínez-Santos, E. (2022). Advances in Somatic Embryogenesis in Vanilla (Vanilla planifolia Jacks.). In: Ramírez-Mosqueda, M.A. (eds) Somatic Embryogenesis. Methods in Molecular Biology, vol 2527. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2485-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2485-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2484-5

  • Online ISBN: 978-1-0716-2485-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics