Skip to main content

Detection of Gasdermin Activation and Lytic Cell Death During Pyroptosis and Apoptosis

  • Protocol
  • First Online:
Effector-Triggered Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2523))

Abstract

Cytosolic pattern recognition receptors trigger pyroptosis by detection of danger- or pathogen-associated molecular patterns. These receptors initiate the assembly of inflammasomes, multimeric protein complexes that drive caspase-1 activation. Active caspase-1 cleaves the proinflammatory cytokines IL-1β and IL-18 and the pore-forming protein gasdermin-D (GSDMD) thereby liberating its N-terminal domain. The GSDMD N-termini form multimeric pores at the plasma membrane that allow leakage of intracellular content and ultimately trigger a type of cell death called “pyroptosis.” Emerging studies have revealed that GSDMD is also processed by apoptotic caspases-8/-3/-7. In this chapter, we aim to describe methods to monitor lytic cell death and to distinguish between GSDMD processing events and the GSDMD fragments that are generated after pyroptosis or apoptosis induction. We also illustrate the difference between GSDMD pore formation, and final cell lysis, and how this affects to the release of intracellular content. Finally, we show that the activation of another pore-forming protein, gasdermin-E, does not exclusively translate into lytic cell death in bone marrow-derived macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

    Article  CAS  Google Scholar 

  2. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426. https://doi.org/10.1016/s1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  3. Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11(5):385–393. https://doi.org/10.1038/ni.1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K, Chan S, Dong J, Qu Y, Roose-Girma M, Dixit VM, Monack DM (2010) Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci U S A 107(21):9771–9776. https://doi.org/10.1073/pnas.1003738107

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA (2010) Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7(5):412–419. https://doi.org/10.1016/j.chom.2010.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218. https://doi.org/10.1038/nature02664

    Article  CAS  PubMed  Google Scholar 

  7. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582. https://doi.org/10.1038/ni1346

    Article  CAS  PubMed  Google Scholar 

  8. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575. https://doi.org/10.1038/ni1344

    Article  CAS  PubMed  Google Scholar 

  9. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107(7):3076–3080. https://doi.org/10.1073/pnas.0913087107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun YH, Rolan HG, Tsolis RM (2007) Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem 282(47):33897–33901. https://doi.org/10.1074/jbc.C700181200

    Article  CAS  PubMed  Google Scholar 

  11. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595. https://doi.org/10.1038/nature10394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rauch I, Tenthorey JL, Nichols RD, Al Moussawi K, Kang JJ, Kang C, Kazmierczak BI, Vance RE (2016) NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med 213(5):657–665. https://doi.org/10.1084/jem.20151809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE, Miao EA (2013) Cutting edge: mouse NAIP1 detects the type III secretion system needle protein. J Immunol 191(8):3986–3989. https://doi.org/10.4049/jimmunol.1301549

    Article  CAS  PubMed  Google Scholar 

  14. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 110(35):14408–14413. https://doi.org/10.1073/pnas.1306376110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. https://doi.org/10.1038/nature10510

    Article  CAS  PubMed  Google Scholar 

  16. Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, Sagara J, Fernandes-Alnemri T, Alnemri ES (2006) Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ 13(2):236–249. https://doi.org/10.1038/sj.cdd.4401734

    Article  CAS  PubMed  Google Scholar 

  17. Seshadri S, Duncan MD, Hart JM, Gavrilin MA, Wewers MD (2007) Pyrin levels in human monocytes and monocyte-derived macrophages regulate IL-1beta processing and release. J Immunol 179(2):1274–1281. https://doi.org/10.4049/jimmunol.179.2.1274

    Article  CAS  PubMed  Google Scholar 

  18. McKee CM, Coll RC (2020) NLRP3 inflammasome priming: a riddle wrapped in a mystery inside an enigma. J Leukoc Biol 108:937–952. https://doi.org/10.1002/JLB.3MR0720-513R

    Article  CAS  PubMed  Google Scholar 

  19. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  20. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  21. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113(28):7858–7863. https://doi.org/10.1073/pnas.1607769113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111–116. https://doi.org/10.1038/nature18590

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158. https://doi.org/10.1038/nature18629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Muller DJ, Broz P, Hiller S (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35(16):1766–1778. https://doi.org/10.15252/embj.201694696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117–121. https://doi.org/10.1038/nature10558

    Article  CAS  PubMed  Google Scholar 

  26. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490(7419):288–291. https://doi.org/10.1038/nature11419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150(3):606–619. https://doi.org/10.1016/j.cell.2012.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, Yamamoto M, Broz P (2014) Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509(7500):366–370. https://doi.org/10.1038/nature13157

    Article  CAS  PubMed  Google Scholar 

  29. Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D, Pfeffer K, Ernst RK, Yamamoto M, Miao EA, Coers J (2014) Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc Natl Acad Sci U S A 111(16):6046–6051. https://doi.org/10.1073/pnas.1321700111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Man SM, Karki R, Sasai M, Place DE, Kesavardhana S, Temirov J, Frase S, Zhu Q, Malireddi RKS, Kuriakose T, Peters JL, Neale G, Brown SA, Yamamoto M, Kanneganti TD (2016) IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167(2):382–396.e317. https://doi.org/10.1016/j.cell.2016.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Santos JC, Dick MS, Lagrange B, Degrandi D, Pfeffer K, Yamamoto M, Meunier E, Pelczar P, Henry T, Broz P (2018) LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. EMBO J 37(6):e98089. https://doi.org/10.15252/embj.201798089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Finethy R, Luoma S, Orench-Rivera N, Feeley EM, Haldar AK, Yamamoto M, Kanneganti TD, Kuehn MJ, Coers J (2017) Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins. mBio 8(5):e01188-17. https://doi.org/10.1128/mBio.01188-17

    Article  PubMed  PubMed Central  Google Scholar 

  33. Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, Heilig R, Chen KW, Lim RYH, Broz P (2020) Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat Commun 11(1):3276. https://doi.org/10.1038/s41467-020-16889-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wandel MP, Kim BH, Park ES, Boyle KB, Nayak K, Lagrange B, Herod A, Henry T, Zilbauer M, Rohde J, MacMicking JD, Randow F (2020) Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat Immunol 21(8):880–891. https://doi.org/10.1038/s41590-020-0697-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eren E, Planes R, Bagayoko S, Bordignon PJ, Chaoui K, Hessel A, Santoni K, Pinilla M, Lagrange B, Burlet-Schiltz O, Howard JC, Henry T, Yamamoto M, Meunier E (2020) Irgm2 and Gate-16 cooperatively dampen Gram-negative bacteria-induced caspase-11 response. EMBO Rep 21(11):e50829. https://doi.org/10.15252/embr.202050829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Finethy R, Dockterman J, Kutsch M, Orench-Rivera N, Wallace GD, Piro AS, Luoma S, Haldar AK, Hwang S, Martinez J, Kuehn MJ, Taylor GA, Coers J (2020) Dynamin-related Irgm proteins modulate LPS-induced caspase-11 activation and septic shock. EMBO Rep 21(11):e50830. https://doi.org/10.15252/embr.202050830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakaguchi N, Sasai M, Bando H, Lee Y, Pradipta A, Ma JS, Yamamoto M (2020) Role of Gate-16 and Gabarap in prevention of caspase-11-dependent excess inflammation and lethal endotoxic shock. Front Immunol 11:561948. https://doi.org/10.3389/fimmu.2020.561948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruhl S, Broz P (2015) Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Eur J Immunol 45(10):2927–2936. https://doi.org/10.1002/eji.201545772

    Article  CAS  PubMed  Google Scholar 

  39. Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P (2018) The Gasdermin-D pore acts as a conduit for IL-1beta secretion in mice. Eur J Immunol 48(4):584–592. https://doi.org/10.1002/eji.201747404

    Article  CAS  PubMed  Google Scholar 

  40. Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O’Rourke K, Li Q, Sandoval W, Yan D, Kang J, Xu M, Zhang J, Lee WP, McKenzie BS, Ulas G, Payandeh J, Roose-Girma M, Modrusan Z, Reja R, Sagolla M, Webster JD, Cho V, Andrews TD, Morris LX, Miosge LA, Goodnow CC, Bertram EM, Dixit VM (2021) NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591(7848):131–136. https://doi.org/10.1038/s41586-021-03218-7

    Article  CAS  PubMed  Google Scholar 

  41. Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, Linkermann A, Green DR (2017) ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169(2):286–300.e216. https://doi.org/10.1016/j.cell.2017.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruhl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P (2018) ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362(6417):956–960. https://doi.org/10.1126/science.aar7607

    Article  CAS  PubMed  Google Scholar 

  43. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257. https://doi.org/10.1038/bjc.1972.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216

    CAS  PubMed  Google Scholar 

  46. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286. https://doi.org/10.1038/nature08296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature 467(7317):863–867. https://doi.org/10.1038/nature09413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sandilos JK, Chiu YH, Chekeni FB, Armstrong AJ, Walk SF, Ravichandran KS, Bayliss DA (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287(14):11303–11311. https://doi.org/10.1074/jbc.M111.323378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180. https://doi.org/10.1038/nri3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9(5):353–363. https://doi.org/10.1038/nri2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol 17(4):262–275. https://doi.org/10.1038/nri.2017.9

    Article  CAS  PubMed  Google Scholar 

  52. Vince JE, Wong WW, Gentle I, Lawlor KE, Allam R, O’Reilly L, Mason K, Gross O, Ma S, Guarda G, Anderton H, Castillo R, Hacker G, Silke J, Tschopp J (2012) Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36(2):215–227. https://doi.org/10.1016/j.immuni.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  53. Vince JE, De Nardo D, Gao W, Vince AJ, Hall C, McArthur K, Simpson D, Vijayaraj S, Lindqvist LM, Bouillet P, Rizzacasa MA, Man SM, Silke J, Masters SL, Lessene G, Huang DCS, Gray DHD, Kile BT, Shao F, Lawlor KE (2018) The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1beta activation. Cell Rep 25(9):2339–2353.e2334. https://doi.org/10.1016/j.celrep.2018.10.103

    Article  CAS  PubMed  Google Scholar 

  54. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, Hall C, Kaur Spall S, Anderton H, Masters SL, Rashidi M, Wicks IP, Alexander WS, Mitsuuchi Y, Benetatos CA, Condon SM, Wong WW, Silke J, Vaux DL, Vince JE (2015) RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 6:6282. https://doi.org/10.1038/ncomms7282

    Article  CAS  PubMed  Google Scholar 

  55. Wicki S, Gurzeler U, Wei-Lynn Wong W, Jost PJ, Bachmann D, Kaufmann T (2016) Loss of XIAP facilitates switch to TNF alpha-induced necroptosis in mouse neutrophils. Cell Death Dis 7(10):e2422. https://doi.org/10.1038/cddis.2016.311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chauhan D, Bartok E, Gaidt MM, Bock FJ, Herrmann J, Seeger JM, Broz P, Beckmann R, Kashkar H, Tait SWG, Muller R, Hornung V (2018) BAX/BAK-induced apoptosis results in caspase-8-dependent IL-1beta maturation in macrophages. Cell Rep 25(9):2354–2368.e2355. https://doi.org/10.1016/j.celrep.2018.10.087

    Article  CAS  PubMed  Google Scholar 

  57. Chen KW, Lawlor KE, von Pein JB, Boucher D, Gerlic M, Croker BA, Bezbradica JS, Vince JE, Schroder K (2018) Cutting edge: blockade of inhibitor of apoptosis proteins sensitizes neutrophils to TNF- but not lipopolysaccharide-mediated cell death and IL-1beta secretion. J Immunol 200(10):3341–3346. https://doi.org/10.4049/jimmunol.1701620

    Article  CAS  PubMed  Google Scholar 

  58. Malireddi RKS, Gurung P, Mavuluri J, Dasari TK, Klco JM, Chi H, Kanneganti TD (2018) TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J Exp Med 215(4):1023–1034. https://doi.org/10.1084/jem.20171922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yabal M, Muller N, Adler H, Knies N, Gross CJ, Damgaard RB, Kanegane H, Ringelhan M, Kaufmann T, Heikenwalder M, Strasser A, Gross O, Ruland J, Peschel C, Gyrd-Hansen M, Jost PJ (2014) XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep 7(6):1796–1808. https://doi.org/10.1016/j.celrep.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  60. Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, Giansanti P, Heck AJ, Dejardin E, Vandenabeele P, Bertrand MJ (2015) NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell 60(1):63–76. https://doi.org/10.1016/j.molcel.2015.07.032

    Article  CAS  PubMed  Google Scholar 

  61. Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE, Neale G, Vogel P, Kanneganti TD (2016) ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol 1(2):aag2045. https://doi.org/10.1126/sciimmunol.aag2045

    Article  PubMed  PubMed Central  Google Scholar 

  62. Miwa K, Asano M, Horai R, Iwakura Y, Nagata S, Suda T (1998) Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 4(11):1287–1292. https://doi.org/10.1038/3276

    Article  CAS  PubMed  Google Scholar 

  63. Joosten LA, Netea MG, Fantuzzi G, Koenders MI, Helsen MM, Sparrer H, Pham CT, van der Meer JW, Dinarello CA, van den Berg WB (2009) Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum 60(12):3651–3662. https://doi.org/10.1002/art.25006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M, Corr M (2009) Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum 60(12):3642–3650. https://doi.org/10.1002/art.24959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mandal P, Feng Y, Lyons JD, Berger SB, Otani S, DeLaney A, Tharp GK, Maner-Smith K, Burd EM, Schaeffer M, Hoffman S, Capriotti C, Roback L, Young CB, Liang Z, Ortlund EA, DiPaolo NC, Bosinger S, Bertin J, Gough PJ, Brodsky IE, Coopersmith CM, Shayakhmetov DM, Mocarski ES (2018) Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic shock. Immunity 49(1):42–55.e46. https://doi.org/10.1016/j.immuni.2018.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taabazuing CY, Okondo MC, Bachovchin DA (2017) Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 24(4):507–514.e504. https://doi.org/10.1016/j.chembiol.2017.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady CJ, Pelczar P, Broz P (2019) Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J 38(10):e101638. https://doi.org/10.15252/embj.2019101638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186(11):6553–6561. https://doi.org/10.4049/jimmunol.1100478

    Article  CAS  PubMed  Google Scholar 

  69. Chen KW, Demarco B, Broz P (2020) Pannexin-1 promotes NLRP3 activation during apoptosis but is dispensable for canonical or noncanonical inflammasome activation. Eur J Immunol 50(2):170–177. https://doi.org/10.1002/eji.201948254

    Article  CAS  PubMed  Google Scholar 

  70. Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V, Linkermann A, Roger T, Brodsky IE, Chen KW, Broz P (2020) Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv 6(47):eabc3465. https://doi.org/10.1126/sciadv.abc3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E (2018) Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362(6418):1064–1069. https://doi.org/10.1126/science.aau2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 115(46):E10888–E10897. https://doi.org/10.1073/pnas.1809548115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sanjo H, Nakayama J, Yoshizawa T, Fehling HJ, Akira S, Taki S (2019) Cutting edge: TAK1 safeguards macrophages against proinflammatory cell death. J Immunol 203(4):783–788. https://doi.org/10.4049/jimmunol.1900202

    Article  CAS  PubMed  Google Scholar 

  74. Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35(6):908–918. https://doi.org/10.1016/j.immuni.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  75. Polykratis A, Hermance N, Zelic M, Roderick J, Kim C, Van TM, Lee TH, Chan FKM, Pasparakis M, Kelliher MA (2014) Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J Immunol 193(4):1539–1543. https://doi.org/10.4049/jimmunol.1400590

    Article  CAS  PubMed  Google Scholar 

  76. Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth MJ, Silke J, Hakem R, Bouillet P, Mak TW, Dixit VM, Strasser A (2009) Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase-8 and involves the BH3-only proteins Bid and Bim. Immunity 30(1):56–66. https://doi.org/10.1016/j.immuni.2008.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:14128. https://doi.org/10.1038/ncomms14128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103. https://doi.org/10.1038/nature22393

    Article  CAS  PubMed  Google Scholar 

  79. Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, Sun RY, Zhou D, Han J, Wu Q (2018) Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 28(12):1171–1185. https://doi.org/10.1038/s41422-018-0090-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee BL, Mirrashidi KM, Stowe IB, Kummerfeld SK, Watanabe C, Haley B, Cuellar TL, Reichelt M, Kayagaki N (2018) ASC- and caspase-8-dependent apoptotic pathway diverges from the NLRC4 inflammasome in macrophages. Sci Rep 8(1):3788. https://doi.org/10.1038/s41598-018-21998-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zheng M, Williams EP, Malireddi RKS, Karki R, Banoth B, Burton A, Webby R, Channappanavar R, Jonsson CB, Kanneganti TD (2020) Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem 295(41):14040–14052. https://doi.org/10.1074/jbc.RA120.015036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tixeira R, Shi B, Parkes MAF, Hodge AL, Caruso S, Hulett MD, Baxter AA, Phan TK, Poon IKH (2018) Gasdermin E does not limit apoptotic cell disassembly by promoting early onset of secondary necrosis in jurkat T cells and THP-1 monocytes. Front Immunol 9:2842. https://doi.org/10.3389/fimmu.2018.02842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dickson RC, Bronk SF, Gores GJ (1992) Glycine cytoprotection during lethal hepatocellular injury from adenosine triphosphate depletion. Gastroenterology 102(6):2098–2107. https://doi.org/10.1016/0016-5085(92)90338-y

    Article  CAS  PubMed  Google Scholar 

  84. Phulphagar K, Kuhn LI, Ebner S, Frauenstein A, Swietlik JJ, Rieckmann J, Meissner F (2021) Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis. Cell Rep 34(10):108826. https://doi.org/10.1016/j.celrep.2021.108826

    Article  CAS  PubMed  Google Scholar 

  85. Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J, Shi J, Donado CA, Shao F, Wu H, Springstead JR, Kagan JC (2016) An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352(6290):1232–1236. https://doi.org/10.1126/science.aaf3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wolf AJ, Reyes CN, Liang W, Becker C, Shimada K, Wheeler ML, Cho HC, Popescu NI, Coggeshall KM, Arditi M, Underhill DM (2016) Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166(3):624–636. https://doi.org/10.1016/j.cell.2016.05.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AA, Cooper MA, Graf T, Hornung V (2016) Human monocytes engage an alternative inflammasome pathway. Immunity 44(4):833–846. https://doi.org/10.1016/j.immuni.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  88. Vigano E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A (2015) Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 6:8761. https://doi.org/10.1038/ncomms9761

    Article  CAS  PubMed  Google Scholar 

  89. Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, Schroder K (2014) The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8(2):570–582. https://doi.org/10.1016/j.celrep.2014.06.028

    Article  CAS  PubMed  Google Scholar 

  90. Karmakar M, Katsnelson MA, Dubyak GR, Pearlman E (2016) Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1beta secretion in response to ATP. Nat Commun 7:10555. https://doi.org/10.1038/ncomms10555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (2018) The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48(1):35–44.e36. https://doi.org/10.1016/j.immuni.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  92. Kang TB, Yang SH, Toth B, Kovalenko A, Wallach D (2013) Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38(1):27–40. https://doi.org/10.1016/j.immuni.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  93. Monteleone M, Stanley AC, Chen KW, Brown DL, Bezbradica JS, von Pein JB, Holley CL, Boucher D, Shakespear MR, Kapetanovic R, Rolfes V, Sweet MJ, Stow JL, Schroder K (2018) Interleukin-1beta maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep 24(6):1425–1433. https://doi.org/10.1016/j.celrep.2018.07.027

    Article  CAS  PubMed  Google Scholar 

  94. Broz P, Monack DM (2013) Measuring inflammasome activation in response to bacterial infection. Methods Mol Biol 1040:65–84. https://doi.org/10.1007/978-1-62703-523-1_6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council grant (ERC2017-CoG-770988-InflamCellDeath) and a Swiss National Science Foundation grant (SNSF 175576).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Broz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Demarco, B., Ramos, S., Broz, P. (2022). Detection of Gasdermin Activation and Lytic Cell Death During Pyroptosis and Apoptosis. In: Kufer, T.A., Kaparakis-Liaskos, M. (eds) Effector-Triggered Immunity. Methods in Molecular Biology, vol 2523. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2449-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2449-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2448-7

  • Online ISBN: 978-1-0716-2449-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics