Skip to main content

Genetic Transformation of Candida auris via Homology-Directed Repair Using a Standard Lithium Acetate Protocol

  • Protocol
  • First Online:
Candida auris

Abstract

Reverse genetics is a particularly powerful tool in non-model organisms with known whole-genome sequences enabling the characterization of gene and, thus, protein function via a mutant phenotype. Reverse genetic approaches require genetic manipulation techniques which often need to be specifically developed for non-model organisms; this can be fraught with difficulties. Here, we describe a genetic transformation protocol for the recently emerged human pathogen Candida auris to target the integration of DNA constructs into genomic locations via homology-directed repair using long flanking homologous sequences (>1 kb). We detail the generation of DNA constructs for gene deletion with dominant drug resistance markers via fusion PCR, the transformation of these constructs into chemically competent C. auris cells, and the confirmation of correct integration by PCR. This strategy can be adapted to deliver DNA constructs other than deletion cassettes, including promoter exchanges and protein tags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhodes J, Fisher MC (2019) Global epidemiology of emerging Candida auris. Curr Opin Microbiol 52:84–89. https://doi.org/10.1016/j.mib.2019.05.008

    Article  PubMed  Google Scholar 

  2. de Jong AW, Hagen F (2019) Attack, defend and persist: how the fungal pathogen Candida auris was able to emerge globally in healthcare environments. Mycopathologia 184:353–365. https://doi.org/10.1007/s11046-019-00351-w

    Article  PubMed  Google Scholar 

  3. Bravo Ruiz G, Lorenz A (2021) What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 242:126621. https://doi.org/10.1016/j.micres.2020.126621

    Article  PubMed  CAS  Google Scholar 

  4. Grahl N, Demers EG, Crocker AW, Hogan DA (2017) Use of RNA-Protein complexes for genome editing in non-albicans Candida species. mSphere 2:e00218–e00217. https://doi.org/10.1128/mSphere.00218-17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Day AM, McNiff MM, da Silva DA et al (2018) Hog1 regulates stress tolerance and virulence in the emerging fungal pathogen Candida auris. mSphere 3:e00506–e00518. https://doi.org/10.1128/mSphere.00506-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Defosse TA, Courdavault V, Coste AT et al (2018) A standardized toolkit for genetic engineering of CTG clade yeasts. J Microbiol Methods 144:152–156. https://doi.org/10.1016/j.mimet.2017.11.015

    Article  PubMed  CAS  Google Scholar 

  7. Defosse TA, Le Govic Y, Vandeputte P et al (2018) A synthetic construct for genetic engineering of the emerging pathogenic yeast Candida auris. Plasmid 95:7–10. https://doi.org/10.1016/j.plasmid.2017.11.001

    Article  PubMed  CAS  Google Scholar 

  8. Kim SH, Iyer KR, Pardeshi L et al (2019) Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. MBio 10:e02529–e02518. https://doi.org/10.1128/mBio.02529-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rybak JM, Doorley LA, Nishimoto AT et al (2019) Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris. Antimicrob Agents Chemother 63:e00057–e00019. https://doi.org/10.1128/AAC.00057-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rybak JM, Muñoz JF, Barker KS et al (2020) Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. MBio 11:e00365–e00320. https://doi.org/10.1128/mBio.00365-20

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bravo Ruiz G, Ross ZK, Gow NAR, Lorenz A (2020) Pseudohyphal growth of the emerging pathogen Candida auris is triggered by genotoxic stress through the S phase checkpoint. mSphere 5:e00151–e00120. https://doi.org/10.1128/msphere.00151-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mayr E-M, Ramírez-Zavala B, Krüger I, Morschhäuser J (2020) A zinc cluster transcription factor contributes to the intrinsic fluconazole resistance of Candida auris. mSphere 5:e00279–e00220. https://doi.org/10.1128/mSphere.00279-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shivarathri R, Jenull S, Stoiber A et al (2020) The two-component response regulator Ssk1 and the mitogen-activated protein kinase Hog1 control antifungal drug resistance and cell wall achitecture of Candida auris. mSphere 5:e00973–e00920. https://doi.org/10.1128/mSphere.00973-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Baudin A, Ozier-Kalogeropoulos O, Denouel A et al (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330. https://doi.org/10.1093/nar/21.14.3329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874

    Article  CAS  Google Scholar 

  16. Shevchuk NA, Bryksin AV, Nusinovich YA et al (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res 32:e19. https://doi.org/10.1093/nar/gnh014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shen J, Guo W, Köhler JR (2005) CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect Immun 73:1239–1242. https://doi.org/10.1128/IAI.73.2.1239-1242.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Walther A, Wendland J (2003) An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42:339–343. https://doi.org/10.1007/s00294-002-0349-0

    Article  PubMed  CAS  Google Scholar 

  19. Amberg DC, Strathern JN, Burke DJ (2005) Methods in yeast genetics: a cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

Download references

Acknowledgments

We are grateful for support from the Wellcome Trust [grant numbers 212524/Z/18/Z and 204815/Z/16/Z].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bravo Ruiz, G., Lorenz, A. (2022). Genetic Transformation of Candida auris via Homology-Directed Repair Using a Standard Lithium Acetate Protocol. In: Lorenz, A. (eds) Candida auris. Methods in Molecular Biology, vol 2517. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2417-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2417-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2416-6

  • Online ISBN: 978-1-0716-2417-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics